

| AP Calculus AB - MA5186               | Scope and Sequence                                                             |  |
|---------------------------------------|--------------------------------------------------------------------------------|--|
| Unit Lesson                           | Objectives                                                                     |  |
| Precalculus Review                    |                                                                                |  |
| Introduction to AP Calculus           |                                                                                |  |
| Writing Two-Variable Linear Equations |                                                                                |  |
|                                       | Create linear equations given information about points, slope, and intercepts. |  |
|                                       | Solve problems by writing two-variable linear equations.                       |  |
| Reading Lesson 1.1                    |                                                                                |  |
| Composition of Functions              |                                                                                |  |
|                                       | Write an expression for the composition of functions.                          |  |
|                                       | Find the domain of the composition of functions.                               |  |
|                                       | Evaluate the composition of functions.                                         |  |
| Symmetry                              |                                                                                |  |
|                                       | Determine the symmetry of a relation from a graph.                             |  |
|                                       | Determine the symmetry of a function algebraically.                            |  |
| Piecewise Defined Functions           |                                                                                |  |
|                                       | Graph piecewise defined functions.                                             |  |
|                                       | Evaluate piecewise defined functions.                                          |  |
|                                       | Determine the domain, range, and continuity of piecewise defined functions.    |  |
| Reading Lesson 1.2                    |                                                                                |  |
| Graphing Exponential Functions        |                                                                                |  |
|                                       | Identify exponential functions.                                                |  |
|                                       | Determine the domain and range of exponential functions.                       |  |
|                                       | Graph exponential functions.                                                   |  |

| AP Calculus AB - MA5186                             | Scope and Sequence                                                                                         |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Unit Lesson                                         | Objectives                                                                                                 |
| Base e                                              |                                                                                                            |
|                                                     | Apply properties of logarithms and exponents to solve exponential and logarithmic equations having base e. |
|                                                     | Analyze exponential and logarithmic functions in base e to determine key features of the graph.            |
|                                                     | Determine the domain and range of exponential and logarithmic functions in base e.                         |
| Modeling with Exponential and Logarithmic Equations |                                                                                                            |
|                                                     | Model and solve real-world problems using exponential and logarithmic functions.                           |
| Reading Lesson 1.3                                  |                                                                                                            |
| Parametric Equations                                |                                                                                                            |
|                                                     | Define curves parametrically.                                                                              |
|                                                     | Graph parametric equations.                                                                                |
|                                                     | Determine the Cartesian equation that contains a given parametric equation.                                |
| Reading Lesson 1.4                                  |                                                                                                            |
| Function Inverses                                   |                                                                                                            |
|                                                     | Find the inverse of a function.                                                                            |
|                                                     | Use composition to verify that functions are inverses.                                                     |
| Graphing Logarithmic Functions                      |                                                                                                            |
|                                                     | Identify logarithmic functions.                                                                            |
|                                                     | Determine the domain and range of logarithmic functions.                                                   |
|                                                     | Identify and analyze the graphs of logarithmic functions.                                                  |
| Properties of Logarithms                            |                                                                                                            |
|                                                     | Evaluate, expand, and simplify logarithmic expressions using properties of logarithms.                     |
|                                                     |                                                                                                            |

| AP C | alculus AB - MA5186                        | Scope and Sequence                                                                                                                  |
|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Unit | Lesson                                     | Objectives                                                                                                                          |
|      | Reading Lesson 1.5                         |                                                                                                                                     |
|      | Radian Measure                             |                                                                                                                                     |
|      |                                            | Convert between degree and radian measure.                                                                                          |
|      |                                            | Use the definition of radian measure to calculate arc lengths, radii, and angle measures.                                           |
|      | Evaluating the Six Trigonometric Functions |                                                                                                                                     |
|      |                                            | Evaluate the six trigonometric functions for angles in degrees or radians based on one or more given trigonometric function values. |
|      |                                            | Evaluate the six trigonometric functions for angles in degrees or radians given a point on the terminal ray.                        |
|      | Solving Trigonometric Equations            |                                                                                                                                     |
|      |                                            | Analyze key features of inverse trigonometric functions from equations and graphs.                                                  |
|      |                                            | Evaluate inverse trigonometric functions over a specified domain.                                                                   |
|      |                                            | Solve trigonometric equations over a specified domain.                                                                              |
|      | Modeling with Periodic Functions           |                                                                                                                                     |
|      |                                            | Model and solve real-world problems using periodic functions.                                                                       |
|      | Reading Lesson 1.6                         |                                                                                                                                     |
|      | Technology Corner                          |                                                                                                                                     |
|      | Unit Test                                  |                                                                                                                                     |
|      |                                            | Find the domain of the composition of functions.                                                                                    |
|      |                                            | Determine the symmetry of a function algebraically.                                                                                 |
|      |                                            | Determine the domain, range, and continuity of piecewise-defined functions.                                                         |
|      |                                            | Apply properties of logarithms and exponents to solve exponential and logarithmic equations having base e.                          |
|      |                                            | Analyze exponential and logarithmic functions in base e to determine key features of the graph.                                     |

| AP Calculus AB - MA5186                                          | Scope and Sequence                                                                                                                  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson                                                      | Objectives                                                                                                                          |
|                                                                  | Model and solve real-world problems using exponential and logarithmic functions.                                                    |
|                                                                  | Evaluate, expand, and simplify logarithmic expressions using properties of logarithms.                                              |
|                                                                  | Evaluate the six trigonometric functions for angles in degrees or radians based on one or more given trigonometric function values. |
|                                                                  | Analyze key features of inverse trigonometric functions from equations and graphs.                                                  |
|                                                                  | Solve trigonometric equations over a specified domain.                                                                              |
|                                                                  | Model and solve real-world problems using periodic functions.                                                                       |
|                                                                  | Define curves parametrically.                                                                                                       |
| Limits and Continuity                                            |                                                                                                                                     |
| Introduction to Unit 2                                           |                                                                                                                                     |
| Rates of Change, Limits, and the Squeeze Theorem                 |                                                                                                                                     |
|                                                                  | Determine average speed.                                                                                                            |
|                                                                  | Compare average speed to instantaneous speed.                                                                                       |
|                                                                  | Define the limit of a function and the properties of limits.                                                                        |
|                                                                  | Identify conditions under which a limit does and does not exist.                                                                    |
|                                                                  | Determine one-sided and two-sided limits of functions.                                                                              |
|                                                                  | Use the squeeze theorem to indirectly find limits.                                                                                  |
| Reading Lesson 2.1                                               |                                                                                                                                     |
| Limits Involving Infinity and Vertical and Horizontal Asymptotes |                                                                                                                                     |
|                                                                  | Calculate limits as x goes to positive and negative infinity.                                                                       |
|                                                                  | Find vertical and horizontal asymptotes using limits.                                                                               |
|                                                                  | Determine end behavior of a function using limits.                                                                                  |
|                                                                  |                                                                                                                                     |

| AP Calculus AB - M       | A5186                          | Scope and Sequence                                                                                   |
|--------------------------|--------------------------------|------------------------------------------------------------------------------------------------------|
| Unit Lesson              |                                | Objectives                                                                                           |
| Reading Lesso            | on 2.2                         |                                                                                                      |
| Continuous Fu<br>Theorem | nctions and Intermediate Value |                                                                                                      |
|                          |                                | Identify intervals of continuity and discontinuity over intervals of a function.                     |
|                          |                                | Identify types of discontinuity, including jump, infinite, and oscillating.                          |
|                          |                                | Modify or extend a function to remove discontinuities.                                               |
|                          |                                | Use properties of continuous functions to determine function continuity over algebraic combinations. |
|                          |                                | Use the intermediate value theorem to verify continuity.                                             |
| Reading Lesso            | on 2.3                         |                                                                                                      |
| Slope, Tangen            | t Line, and Normal Line        |                                                                                                      |
|                          |                                | Calculate the average rate of change of a function.                                                  |
|                          |                                | Determine the slope of the tangent line at a point using limits.                                     |
|                          |                                | Determine the equation of the tangent line to a curve at a given point.                              |
|                          |                                | Determine the equation of the normal line to a curve at a given point.                               |
| Reading Lesso            | on 2.4                         |                                                                                                      |
| Unit 2 Project           |                                |                                                                                                      |
| Technology Co            | orner                          |                                                                                                      |
| Unit Test                |                                |                                                                                                      |
|                          |                                | Determine average speed.                                                                             |
|                          |                                | Compare average speed to instantaneous speed.                                                        |
|                          |                                | Identify conditions when a limit does and does not exist.                                            |
|                          |                                | Define the limit of a function and the properties of limits.                                         |

| AP Calculus AB - MA5186  | Scope and Sequence                                                                                    |
|--------------------------|-------------------------------------------------------------------------------------------------------|
| Unit Lesson              | Objectives                                                                                            |
|                          | Determine one-sided and two-sided limits of functions.                                                |
|                          | Use the sandwich theorem to find limits indirectly.                                                   |
|                          | Determine end behavior of a function using limits.                                                    |
|                          | Find vertical and horizontal asymptotes using limits.                                                 |
|                          | Calculate limits as x goes to positive and negative infinity.                                         |
|                          | Identify intervals of continuity and discontinuity over intervals of a function.                      |
|                          | Identify types of discontinuity, including jump, infinite, and oscillating.                           |
|                          | Modify or extend a function to remove discontinuities.                                                |
|                          | Use properties of continuous functions to determine function continuity after algebraic combinations. |
|                          | Use the intermediate value theorem to verify continuity.                                              |
|                          | Determine the slope of the tangent line at a point using limits.                                      |
|                          | Determine the equation of the tangent line at a given point.                                          |
|                          | Determine the equation of the normal line to a curve at a given point.                                |
|                          | Calculate the average rate of change of a function.                                                   |
| Derivatives              |                                                                                                       |
| Introduction to Unit 3   |                                                                                                       |
| Derivatives of Functions |                                                                                                       |
|                          | Determine the derivative of a function using the definition of a derivative.                          |
|                          | Calculate the derivative of a function at a point.                                                    |
|                          | Sketch a graph of the derivative of a function when given its graph.                                  |
|                          | Sketch a graph of a function when given the graph of its derivative.                                  |
|                          | Approximate the derivative of a function from a given data set.                                       |

| AP Calculus AB - N | MA5186                  | Scope and Sequence                                                                                                       |
|--------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson        |                         | Objectives                                                                                                               |
|                    |                         | Determine if a function is differentiable on a closed interval.                                                          |
| Reading Less       | son 3.1                 |                                                                                                                          |
| Derivatives ar     | nd Continuity           |                                                                                                                          |
|                    |                         | Estimate derivatives using graphs and numerical approximation.                                                           |
|                    |                         | Identify different types of non-differentiable points, including discontinuities, vertical tangents, corners, and cusps. |
| Reading Less       | son 3.2                 |                                                                                                                          |
| Differentiation    | Rules                   |                                                                                                                          |
|                    |                         | Use the power rule to find derivatives.                                                                                  |
|                    |                         | Use the product rule to find derivatives.                                                                                |
|                    |                         | Use the quotient rule to find derivatives.                                                                               |
|                    |                         | Calculate second derivatives and higher-order derivatives using rules of differentiation.                                |
|                    |                         | Calculate instantaneous rate of change using the derivative.                                                             |
| Reading Less       | son 3.3                 |                                                                                                                          |
| Applications of    | of Derivatives          |                                                                                                                          |
|                    |                         | Use derivatives to solve problems involving motion in a straight line.                                                   |
|                    |                         | Solve real-world problems involving rates of change using derivatives.                                                   |
| Reading Less       | son 3.4                 |                                                                                                                          |
| Differentiating    | Trigonometric Functions |                                                                                                                          |
|                    |                         | Determine derivatives of trigonometric functions.                                                                        |
| Reading Less       | son 3.5                 |                                                                                                                          |
| Unit 3 Project     |                         |                                                                                                                          |
| Technology C       | Corner                  |                                                                                                                          |

| AP C | alculus AB - MA5186                            | Scope and Sequence                                                                                                       |
|------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unit | Lesson                                         | Objectives                                                                                                               |
|      | AP Multiple Choice/Free Response               |                                                                                                                          |
|      | Unit Test                                      |                                                                                                                          |
|      |                                                | Compute the derivative of a function using the definition of a derivative.                                               |
|      |                                                | Compute the derivative of a function at a point.                                                                         |
|      |                                                | Sketch a graph of the derivative of a function when given its graph.                                                     |
|      |                                                | Sketch a graph of a function when given the graph of its derivative.                                                     |
|      |                                                | Sketch a graph of the derivative of a function when given a data set.                                                    |
|      |                                                | Determine if a function is differentiable on a closed interval.                                                          |
|      |                                                | Identify different types of non-differentiable points, including discontinuities, vertical tangents, corners, and cusps. |
|      |                                                | Estimate derivatives using graphs and numerical approximation.                                                           |
|      |                                                | Use the power rule to find derivatives.                                                                                  |
|      |                                                | Use the product rule to find derivatives.                                                                                |
|      |                                                | Use the quotient rule to find derivatives.                                                                               |
|      |                                                | Calculate second derivatives and higher order derivatives using rules of differentiation.                                |
|      |                                                | Use derivatives to solve problems involving motion in a straight line.                                                   |
|      |                                                | Solve real-world problems involving rates of change using derivatives.                                                   |
|      |                                                | Determine the derivatives of the six basic trigonometric functions using the rules of differentiation.                   |
| More | Derivatives                                    |                                                                                                                          |
|      | Introduction to Unit 4                         |                                                                                                                          |
|      | Differentiating Functions Using the Chain Rule |                                                                                                                          |
|      |                                                | Apply the chain rule to find the derivative of a composite function.                                                     |
|      |                                                | Use the chain rule to determine the slopes of curves defined parametrically.                                             |

| AP Cal | culus AB - MA5186                                                       | Scope and Sequence                                                                       |
|--------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Unit I | Lesson                                                                  | Objectives                                                                               |
| F      | Reading Lesson 4.1                                                      |                                                                                          |
|        | Differentiating Functions Using Implicit Differentiation                |                                                                                          |
|        |                                                                         | Determine derivatives using implicit differentiation.                                    |
|        |                                                                         | Use the power rule to find the derivative of a function raised to a rational power of x. |
| F      | Reading Lesson 4.2                                                      |                                                                                          |
|        | Differentiating Functions Containing Inverse<br>Trigonometric Functions |                                                                                          |
|        |                                                                         | Determine derivatives of inverse functions using the chain rule.                         |
|        |                                                                         | Determine derivatives of inverse trigonometric function.                                 |
| F      | Reading Lesson 4.3                                                      |                                                                                          |
|        | Differentiating Exponential and Logarithmic Functions                   |                                                                                          |
|        |                                                                         | Calculate derivatives of exponential functions with a base of e.                         |
|        |                                                                         | Calculate derivatives of exponential functions with a base other than e.                 |
|        |                                                                         | Calculate derivatives of natural logarithmic functions.                                  |
|        |                                                                         | Calculate derivatives of logarithmic functions with a base other than e.                 |
| F      | Reading Lesson 4.4                                                      |                                                                                          |
| l      | Unit 4 Project                                                          |                                                                                          |
| -      | Technology Corner                                                       |                                                                                          |
| l      | Unit 4 AP Practice Questions                                            |                                                                                          |
| l      | Unit Test                                                               |                                                                                          |
|        |                                                                         | Apply the chain rule to find the derivative of a composite function.                     |
|        |                                                                         | Use the chain rule to determine the slope of curves defined parametrically.              |

| AP Calculus AB - MA5186          | Scope and Sequence                                                                                             |
|----------------------------------|----------------------------------------------------------------------------------------------------------------|
| Unit Lesson                      | Objectives                                                                                                     |
|                                  | Determine derivatives using implicit differentiation.                                                          |
|                                  | Use the power rule to find the derivative of a function raised to a rational power of x.                       |
|                                  | Determine derivatives of inverse functions using the chain rule.                                               |
|                                  | Determine derivatives of inverse trigonometric functions.                                                      |
|                                  | Determine derivatives of exponential functions with a base of e.                                               |
|                                  | Determine derivatives of exponential functions with a base other than e.                                       |
|                                  | Determine derivatives of natural logarithmic functions.                                                        |
|                                  | Determine derivatives of logarithmic functions with a base other than e.                                       |
| Applications of Derivatives      |                                                                                                                |
| Introduction to Unit 5           |                                                                                                                |
| Relative and Absolute Extrema    |                                                                                                                |
|                                  | Identify the relative minimum and maximum values of a function.                                                |
|                                  | Identify the absolute minimum and maximum values of a function.                                                |
|                                  | Determine if the extreme value theorem applies to a function on a specific interval.                           |
|                                  | Determine critical points of a function.                                                                       |
| Reading Lesson 5.1               |                                                                                                                |
| The Mean Value Theorem           |                                                                                                                |
|                                  | Use the mean value theorem to determine the value where the derivative is equal to the average rate of change. |
|                                  | Determine increasing and decreasing intervals of a function.                                                   |
| Reading Lesson 5.2               |                                                                                                                |
| First and Second Derivative Test |                                                                                                                |
|                                  | Use the first derivative test to determine relative extrema.                                                   |
|                                  |                                                                                                                |

| AP Calculus AB - MA5186                         | Scope and Sequence                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Unit Lesson                                     | Objectives                                                                                             |
|                                                 | Use the second derivative test to determine concavity and points of inflection.                        |
|                                                 | Use the first and second derivative tests to graph f(x) from f'(x).                                    |
| Reading Lesson 5.3                              |                                                                                                        |
| Application Problem Solving                     |                                                                                                        |
|                                                 | Solve optimization problems using derivatives.                                                         |
| Reading Lesson 5.4                              |                                                                                                        |
| Newton's Method, Linearization, and Differentia | als                                                                                                    |
|                                                 | Apply Newton's method to approximate zeros of a function.                                              |
|                                                 | Use linearization to approximate tangent lines.                                                        |
|                                                 | Approximate the change in f using differentials.                                                       |
| Reading Lesson 5.5                              |                                                                                                        |
| Application of Implicit Differentiation         |                                                                                                        |
|                                                 | Use implicit differentiation to solve related rate problems.                                           |
| Reading Lesson 5.6                              |                                                                                                        |
| Unit 5 Project                                  |                                                                                                        |
| Technology Corner                               |                                                                                                        |
| Unit 5 AP Practice Questions                    |                                                                                                        |
| Unit Test                                       |                                                                                                        |
|                                                 | Use the extreme value theorem to determine if a function is continuous.                                |
|                                                 | Identify the relative maximum and minimum values of a function.                                        |
|                                                 | Determine critical points of a function.                                                               |
|                                                 | Use the mean value theorem to determine the value where the derivative is equal to the average change. |
|                                                 |                                                                                                        |

| AP Calculus AB - MA5186 | Scope and Sequence                                                                 |
|-------------------------|------------------------------------------------------------------------------------|
| Unit Lesson             | Objectives                                                                         |
|                         | Determine increasing and decreasing intervals of a function.                       |
|                         | Use the first derivative test to determine relative extrema.                       |
|                         | Use the second derivative test to determine concavity and points of inflection.    |
|                         | Use the first and second derivative test to graph f from f'.                       |
|                         | Solve optimization problems using derivatives.                                     |
|                         | Approximate the change in f using differentials.                                   |
|                         | Use linearization to approximate tangent lines.                                    |
|                         | Use implicit differentiation to solve related rate problems.                       |
| Cumulative Exam         |                                                                                    |
| Cumulative Exam         |                                                                                    |
|                         | Analyze key features of inverse trigonometric functions from equations and graphs. |
|                         | Evaluate inverse trigonometric functions over a specified domain.                  |
|                         | Compare average speed to instantaneous speed.                                      |
|                         | Identify conditions when a limit does and does not exist.                          |
|                         | Define the limit of a function and the properties of limits.                       |
|                         | Determine one-sided and two-sided limits of functions.                             |
|                         | Use the sandwich theorem to find limits indirectly.                                |
|                         | Determine end behavior of a function using limits.                                 |
|                         | Find vertical and horizontal asymptotes using limits.                              |
|                         | Identify intervals of continuity and discontinuity over intervals of a function.   |
|                         | Use the intermediate value theorem to verify continuity.                           |
|                         | Determine the equation of the tangent line at a given point.                       |
|                         |                                                                                    |

| AP Calculus AB - MA5186 | Scope and Sequence                                                                                                       |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson             | Objectives                                                                                                               |
|                         | Determine the equation of the normal line to a curve at a given point.                                                   |
|                         | Compute the derivative of a function using the definition of a derivative.                                               |
|                         | Compute the derivative of a function at a point.                                                                         |
|                         | Sketch a graph of the derivative of a function when given its graph.                                                     |
|                         | Sketch a graph of a function when given the graph of its derivative.                                                     |
|                         | Sketch a graph of the derivative of a function when given a data set.                                                    |
|                         | Identify different types of non-differentiable points, including discontinuities, vertical tangents, corners, and cusps. |
|                         | Estimate derivatives using graphs and numerical approximation.                                                           |
|                         | Use the power rule to find derivatives.                                                                                  |
|                         | Use the product rule to find derivatives.                                                                                |
|                         | Use the quotient rule to find derivatives.                                                                               |
|                         | Calculate second derivatives and higher order derivatives using rules of differentiation.                                |
|                         | Solve motion along a straight line problems using derivatives.                                                           |
|                         | Determine the derivatives of the six basic trigonometric functions using the rules of differentiation.                   |
|                         | Apply the chain rule to find the derivative of a composite function.                                                     |
|                         | Determine derivatives using implicit differentiation.                                                                    |
|                         | Use the power rule to find the derivative of a function raised to a rational power of x.                                 |
|                         | Determine derivatives of inverse functions using the chain rule.                                                         |
|                         | Determine derivatives of inverse trigonometric functions.                                                                |
|                         | Determine derivatives of exponential functions with a base of e.                                                         |
|                         | Determine derivatives of exponential functions with a base other than e.                                                 |
|                         | Determine derivatives of natural logarithmic functions.                                                                  |
|                         |                                                                                                                          |

| AP Calculus AB - MA5186                         | Scope and Sequence                                                                                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Unit Lesson                                     | Objectives                                                                                             |
|                                                 | Determine derivatives of logarithmic functions with a base other than e.                               |
|                                                 | Use the extreme value theorem to determine if a function is continuous.                                |
|                                                 | Use the mean value theorem to determine the value where the derivative is equal to the average change. |
|                                                 | Use the second derivative test to determine concavity and points of inflection.                        |
|                                                 | Use the first and second derivative test to graph f from f '.                                          |
|                                                 | Solve optimization problems using derivatives.                                                         |
|                                                 | Approximate the change in f using differentials.                                                       |
|                                                 | Use linearization to approximate tangent lines.                                                        |
|                                                 | Use implicit differentiation to solve related rate problems.                                           |
| Definite Integrals                              |                                                                                                        |
| Introduction to Unit 6                          |                                                                                                        |
| Estimating with Finite Sums                     |                                                                                                        |
|                                                 | Approximate a distance using area under a velocity curve.                                              |
|                                                 | Approximate the area under a curve by using left, right, and midpoint sums.                            |
|                                                 | Solve accumulation problems by approximating the area under a curve.                                   |
| Reading Lesson 6.1: Estimating with Finite Sums |                                                                                                        |
| Definite Integrals                              |                                                                                                        |
|                                                 | Use integral notation to express a limit of Riemann sums.                                              |
|                                                 | Evaluate a definite integral using an area formula.                                                    |
|                                                 | Use definite integrals to solve problems involving accumulation.                                       |
|                                                 | Evaluate definite integrals of functions with discontinuities.                                         |
|                                                 |                                                                                                        |

| AP C | alculus AB - MA5186                                        | Scope and Sequence                                                                                                      |
|------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Unit | Lesson                                                     | Objectives                                                                                                              |
|      | Definite Integrals and Antiderivatives                     |                                                                                                                         |
|      |                                                            | Solve problems using the properties of definite integrals.                                                              |
|      |                                                            | Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval. |
|      |                                                            | Calculate the area under a curve using antidifferentiation.                                                             |
|      | Reading Lesson 6.3: Definite Integrals and Antiderivatives |                                                                                                                         |
|      | Fundamental Theorem of Calculus, Parts 1 and 2             |                                                                                                                         |
|      |                                                            | Use the first part of the fundamental theorem of calculus to solve problems.                                            |
|      |                                                            | Use the second part of the fundamental theorem of calculus to solve problems.                                           |
|      | Reading Lesson 6.4: Fundamental Theorem of Calculus        |                                                                                                                         |
|      | Trapezoidal Rule                                           |                                                                                                                         |
|      |                                                            | Approximate the area under a curve using the trapezoidal rule.                                                          |
|      |                                                            | Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.                     |
|      | Reading Lesson 6.5: Trapezoidal Rule                       |                                                                                                                         |
|      | Unit 6 Project                                             |                                                                                                                         |
|      | Technology Corner                                          |                                                                                                                         |
|      | Unit 6 AP Practice Questions                               |                                                                                                                         |
|      | Unit Test                                                  |                                                                                                                         |
|      |                                                            | Approximate a distance using area under a velocity curve.                                                               |
|      |                                                            | Approximate the area under a curve by using left, right, and midpoint sums.                                             |
|      |                                                            | Solve accumulation problems by approximating the area under a curve.                                                    |
|      |                                                            | Use integral notation to express a limit of Riemann sums.                                                               |

| AP Calculus AB - MA5186                                 | Scope and Sequence                                                                                                      |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson                                             | Objectives                                                                                                              |
|                                                         | Evaluate a definite integral using an area formula.                                                                     |
|                                                         | Use definite integrals to solve problems involving accumulation.                                                        |
|                                                         | Evaluate definite integrals of functions with discontinuities.                                                          |
|                                                         | Solve problems using the properties of definite integrals.                                                              |
|                                                         | Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval. |
|                                                         | Calculate the area under a curve using antidifferentiation.                                                             |
|                                                         | Use the first part of the fundamental theorem of calculus to solve problems.                                            |
|                                                         | Use the second part of the fundamental theorem of calculus to solve problems.                                           |
|                                                         | Approximate the area under a curve using the trapezoidal rule.                                                          |
|                                                         | Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.                     |
| Mathematical Modeling Using Differential Equations      |                                                                                                                         |
| Introduction to Unit 7                                  |                                                                                                                         |
| Slope Fields                                            |                                                                                                                         |
|                                                         | Use initial conditions to find solutions to differential equations.                                                     |
|                                                         | Use a slope field to find a graphical solution for a given differential equation.                                       |
| Reading Lesson 7.1: Slope Fields and Euler's Method     |                                                                                                                         |
| Antidifferentiation by Substitution                     |                                                                                                                         |
|                                                         | Verify an antiderivative formula.                                                                                       |
|                                                         | Evaluate indefinite integrals without using substitution.                                                               |
|                                                         | Use substitution as a method of evaluating indefinite and definite integrals.                                           |
| Reading Lesson 7.2: Antidifferentiation by Substitution |                                                                                                                         |

| AP C  | alculus AB - MA5186                              | Scope and Sequence                                                                |
|-------|--------------------------------------------------|-----------------------------------------------------------------------------------|
| Unit  | Lesson                                           | Objectives                                                                        |
|       | Exponential Growth and Decay                     |                                                                                   |
|       |                                                  | Use separation of variables to solve initial value problems.                      |
|       |                                                  | Use exponential functions to model growth and decay.                              |
|       |                                                  | Predict temperatures by using Newton's law of cooling.                            |
|       | Reading Lesson 7.4: Exponential Growth and Decay |                                                                                   |
|       | Unit 7 Project                                   |                                                                                   |
|       | Technology Corner                                |                                                                                   |
|       | Unit 7 AP Practice Questions                     |                                                                                   |
|       | Unit Test                                        |                                                                                   |
|       |                                                  | Use initial conditions to find solutions to differential equations.               |
|       |                                                  | Use a slope field to find a graphical solution for a given differential equation. |
|       |                                                  | Evaluate indefinite integrals without using substitution.                         |
|       |                                                  | Verify an antiderivative formula.                                                 |
|       |                                                  | Use substitution as a method of evaluating indefinite and definite integrals.     |
|       |                                                  | Use separation of variables to solve initial value problems.                      |
|       |                                                  | Use exponential functions to model growth and decay.                              |
| Appli | cations of Definite Integrals                    |                                                                                   |
|       | Introduction to Unit 8                           |                                                                                   |
|       | Integral as Net Change                           |                                                                                   |
|       |                                                  | Calculate the displacement of an object from a given velocity function.           |
|       |                                                  | Calculate the total distance an object travels from a given velocity function.    |
|       |                                                  | Express the net change of a quantity as a definite integral.                      |
|       |                                                  |                                                                                   |

| AP C | alculus AB - MA5186                                          | Scope and Sequence                                                                                                                           |
|------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Unit | Lesson                                                       | Objectives                                                                                                                                   |
|      |                                                              | Find the net, or accumulated, change of a quantity from a rate of change function.                                                           |
|      |                                                              | Find the net change of a quantity from a rate of change that is given in graphical or tabular form.                                          |
|      | Reading Lesson 8.1: Accumulation and Net Change              |                                                                                                                                              |
|      | Areas in the Plane                                           |                                                                                                                                              |
|      |                                                              | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to $\mathbf{x}$ . |
|      |                                                              | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to y.             |
|      |                                                              | Use subregions to calculate the area between two curves over a closed interval.                                                              |
|      | Reading Lesson 8.2: Areas in the Plane                       |                                                                                                                                              |
|      | Volumes                                                      |                                                                                                                                              |
|      |                                                              | Use a definite integral to express the volume of a solid.                                                                                    |
|      |                                                              | Find the volume of a solid with known cross sections.                                                                                        |
|      |                                                              | Find the volume of a solid generated by revolving a line or curve around a given line.                                                       |
|      |                                                              | Find the volume of a solid generated by revolving a region bounded by two or more lines or curves around a given line.                       |
|      | Reading Lesson 8.3: Volumes                                  |                                                                                                                                              |
|      | Applications from Science and Statistics                     |                                                                                                                                              |
|      |                                                              | Use the definite integral to solve problems involving work.                                                                                  |
|      |                                                              | Use the definite integral to solve problems involving fluid pressure.                                                                        |
|      |                                                              | Use the definite integral to solve problems involving probabilities.                                                                         |
|      | Reading Lesson 8.5: Applications from Science and Statistics |                                                                                                                                              |
|      | L'Hospital's Rule and Other Applications                     |                                                                                                                                              |
|      |                                                              |                                                                                                                                              |

| AP C | alculus AB - MA5186                                                  | Scope and Sequence                                                                                                               |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Unit | Lesson                                                               | Objectives                                                                                                                       |
|      |                                                                      | Apply L'Hospital's rule to evaluate the limit of an indeterminate form.                                                          |
|      |                                                                      | Compare the growth rates of functions.                                                                                           |
|      | Reading Lesson 9.2 and 9.3: L'Hospital's Rule and Other Applications |                                                                                                                                  |
|      | Unit 8 Project                                                       |                                                                                                                                  |
|      | Technology Corner                                                    |                                                                                                                                  |
|      | Unit 8 AP Practice Questions                                         |                                                                                                                                  |
|      | Unit Test                                                            |                                                                                                                                  |
|      |                                                                      | Calculate the displacement of an object from a given velocity function.                                                          |
|      |                                                                      | Calculate the total distance an object travels from a given velocity function.                                                   |
|      |                                                                      | Express the net change of a quantity as a definite integral.                                                                     |
|      |                                                                      | Find the net, or accumulated, change of a quantity from a rate of change function.                                               |
|      |                                                                      | Find the net change of a quantity from a rate of change that is given in graphical or tabular form.                              |
|      |                                                                      | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to x. |
|      |                                                                      | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to y. |
|      |                                                                      | Use subregions to calculate the area between two curves over a closed interval.                                                  |
|      |                                                                      | Use a definite integral to express the volume of a solid.                                                                        |
|      |                                                                      | Find the volume of a solid with known cross sections.                                                                            |
|      |                                                                      | Find the volume of a solid generated by revolving a line or curve around a given line.                                           |
|      |                                                                      | Find the volume of a solid generated by revolving a region bounded by two or more lines or curves around a given line.           |
|      |                                                                      | Apply l'Hopital's rule to evaluate the limit of an indeterminate form.                                                           |
|      |                                                                      |                                                                                                                                  |

| AP Calculus AB - MA5186 | Scope and Sequence                                                                                                      |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson             | Objectives                                                                                                              |
|                         | Compare the growth rates of functions.                                                                                  |
| Cumulative Exam         |                                                                                                                         |
| Cumulative Exam         |                                                                                                                         |
|                         | Approximate a distance using area under a velocity curve.                                                               |
|                         | Approximate the area under a curve by using left, right, and midpoint sums.                                             |
|                         | Solve accumulation problems by approximating the area under a curve.                                                    |
|                         | Use integral notation to express a limit of Riemann sums.                                                               |
|                         | Evaluate a definite integral using an area formula.                                                                     |
|                         | Use definite integrals to solve problems involving accumulation.                                                        |
|                         | Evaluate definite integrals of functions with discontinuities.                                                          |
|                         | Solve problems using the properties of definite integrals.                                                              |
|                         | Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval. |
|                         | Calculate the area under a curve using antidifferentiation.                                                             |
|                         | Use the first part of the fundamental theorem of calculus to solve problems.                                            |
|                         | Use the second part of the fundamental theorem of calculus to solve problems.                                           |
|                         | Approximate the area under a curve using the trapezoidal rule.                                                          |
|                         | Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.                     |
|                         | Use initial conditions to find solutions to differential equations.                                                     |
|                         | Use a slope field to find a graphical solution for a given differential equation.                                       |
|                         | Evaluate indefinite integrals without using substitution.                                                               |
|                         | Verify an antiderivative formula.                                                                                       |
|                         | Use substitution as a method of evaluating indefinite and definite integrals.                                           |
|                         |                                                                                                                         |

| AP Calculus AB - MA5186 | Scope and Sequence                                                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Unit Lesson             | Objectives                                                                                                                                   |
|                         | Use separation of variables to solve initial value problems.                                                                                 |
|                         | Use exponential functions to model growth and decay.                                                                                         |
|                         | Calculate the displacement of an object from a given velocity function.                                                                      |
|                         | Calculate the total distance an object travels from a given velocity function.                                                               |
|                         | Express the net change of a quantity as a definite integral.                                                                                 |
|                         | Find the net, or accumulated, change of a quantity from a rate of change function.                                                           |
|                         | Find the net change of a quantity from a rate of change that is given in graphical or tabular form.                                          |
|                         | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to $\mathbf{x}$ . |
|                         | Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to y.             |
|                         | Use subregions to calculate the area between two curves over a closed interval.                                                              |
|                         | Use a definite integral to express the volume of a solid.                                                                                    |
|                         | Find the volume of a solid with known cross sections.                                                                                        |
|                         | Find the volume of a solid generated by revolving a line or curve around a given line.                                                       |
|                         | Find the volume of a solid generated by revolving a region bounded by two or more lines or curves around a given line.                       |
|                         | Use the definite integral to solve problems involving work.                                                                                  |
|                         | Use the definite integral to solve problems involving fluid pressure.                                                                        |
|                         | Use the definite integral to solve problems involving probabilities.                                                                         |
|                         | Apply l'Hopital's rule to evaluate the limit of an indeterminate form.                                                                       |
|                         | Compare the growth rates of functions.                                                                                                       |
| Review                  |                                                                                                                                              |
|                         |                                                                                                                                              |

Preparing for the Exam

| AP C | alculus AB - MA5186                 | Scope and Sequence                                                                  |
|------|-------------------------------------|-------------------------------------------------------------------------------------|
| Unit | Lesson                              | Objectives                                                                          |
|      | Review: Limits and Continuity       |                                                                                     |
|      | Review: Derivatives                 |                                                                                     |
|      | Review: Applications of Derivatives |                                                                                     |
|      | Review: Integrals                   |                                                                                     |
|      | Review: Applications of Integrals   |                                                                                     |
|      | Review: Differential Equations      |                                                                                     |
|      | Practice Exam 1 – Part A            |                                                                                     |
|      |                                     | Express limits symbolically using correct notation.                                 |
|      |                                     | Interpret limits expressed symbolically.                                            |
|      |                                     | Estimate limits of functions.                                                       |
|      |                                     | Determine limits of functions.                                                      |
|      |                                     | Deduce and interpret behavior of functions using limits.                            |
|      |                                     | Analyze functions for intervals of continuity or points of discontinuity.           |
|      |                                     | Determine the applicability of important calculus theorems using continuity.        |
|      |                                     | Identify the derivative of a function as the limit of a difference quotient.        |
|      |                                     | Calculate derivatives.                                                              |
|      |                                     | Determine higher-order derivatives.                                                 |
|      |                                     | Recognize the connection between differentiability and continuity.                  |
|      |                                     | Interpret the meaning of a derivative within a problem.                             |
|      |                                     | Verify solutions to differential equations.                                         |
|      |                                     | Recognize antiderivatives of basic functions.                                       |
|      |                                     | Interpret the definite integral as the limit of a Riemann sum in integral notation. |

| AP Calculus AB - MA5186  | Scope and Sequence                                                                    |
|--------------------------|---------------------------------------------------------------------------------------|
| Unit Lesson              | Objectives                                                                            |
|                          | Express the limit of a Riemann sum in integral notation.                              |
|                          | Calculate a definite integral using areas and properties of definite integrals.       |
|                          | Analyze functions defined by an integral.                                             |
|                          | Calculate antiderivatives.                                                            |
|                          | Evaluate definite integrals.                                                          |
|                          | Interpret the meaning of a definite integral within a problem.                        |
|                          | Apply definite integrals to problems involving the average value of a function.       |
|                          | Analyze differential equations to obtain general and specific solutions.              |
|                          | Solve problems involving slope of a tangent line.                                     |
| Practice Exam 1 – Part B |                                                                                       |
|                          | Estimate derivatives.                                                                 |
|                          | Use derivatives to analyze properties of a function.                                  |
|                          | Solve problems involving slope of a tangent line.                                     |
|                          | Solve problems involving related rates, optimization, and rectilinear motion.         |
|                          | Solve problems involving rates of change in applied contexts.                         |
|                          | Estimate solutions to differential equations.                                         |
|                          | Apply the mean value theorem to describe the behavior of a function over an interval. |
|                          | Approximate a definite integral.                                                      |
|                          | Apply definite integrals to problems involving motion.                                |
|                          | Apply definite integrals to problems involving areas and volume.                      |
|                          | Use the definite integral to solve problems in various contexts.                      |
|                          | Interpret, create, and solve differential equations from problems in contexts.        |

| AP C | alculus AB - MA5186                     | Scope and Sequence                                                                  |
|------|-----------------------------------------|-------------------------------------------------------------------------------------|
| Unit | Lesson                                  | Objectives                                                                          |
|      | Practice Exam 1 – Free-Response Section |                                                                                     |
|      | Practice Exam 2 – Part A                |                                                                                     |
|      |                                         | Express limits symbolically using correct notation.                                 |
|      |                                         | Interpret limits expressed symbolically.                                            |
|      |                                         | Estimate limits of functions.                                                       |
|      |                                         | Determine limits of functions.                                                      |
|      |                                         | Deduce and interpret behavior of functions using limits.                            |
|      |                                         | Analyze functions for intervals of continuity or points of discontinuity.           |
|      |                                         | Determine the applicability of important calculus theorems using continuity.        |
|      |                                         | Identify the derivative of a function as the limit of a difference quotient.        |
|      |                                         | Calculate derivatives.                                                              |
|      |                                         | Determine higher-order derivatives.                                                 |
|      |                                         | Recognize the connection between differentiability and continuity.                  |
|      |                                         | Interpret the meaning of a derivative within a problem.                             |
|      |                                         | Verify solutions to differential equations.                                         |
|      |                                         | Recognize antiderivatives of basic functions.                                       |
|      |                                         | Interpret the definite integral as the limit of a Riemann sum in integral notation. |
|      |                                         | Express the limit of a Riemann sum in integral notation.                            |
|      |                                         | Calculate a definite integral using areas and properties of definite integrals.     |
|      |                                         | Analyze functions defined by an integral.                                           |
|      |                                         | Calculate antiderivatives.                                                          |
|      |                                         | Evaluate definite integrals.                                                        |

| AP Calculus AB - MA5186  | Scope and Sequence                                                                    |
|--------------------------|---------------------------------------------------------------------------------------|
| Unit Lesson              | Objectives                                                                            |
|                          | Interpret the meaning of a definite integral within a problem.                        |
|                          | Apply definite integrals to problems involving the average value of a function.       |
|                          | Analyze differential equations to obtain general and specific solutions.              |
|                          | Solve problems involving slope of a tangent line.                                     |
| Practice Exam 2 – Part B |                                                                                       |
|                          | Estimate derivatives.                                                                 |
|                          | Use derivatives to analyze properties of a function.                                  |
|                          | Solve problems involving slope of a tangent line.                                     |
|                          | Solve problems involving related rates, optimization, and rectilinear motion.         |
|                          | Solve problems involving rates of change in applied contexts.                         |
|                          | Estimate solutions to differential equations.                                         |
|                          | Apply the Mean Value Theorem to describe the behavior of a function over an interval. |
|                          | Approximate a definite integral.                                                      |
|                          | Apply definite integrals to problems involving areas and volume.                      |
|                          | Use the definite integral to solve problems in various contexts.                      |
|                          | Interpret, create, and solve differential equations from problems in contexts.        |
|                          | Apply definite integrals to problems involving motion.                                |

Practice Exam 2 – Free-Response Section