edgenuity

AP Calculus AB - MA5186

Scope and Sequence

Unit Lesson

Objectives

Precalculus Review

Introduction to AP Calculus
Writing Two-Variable Linear Equations

Composition of Functions

Reading Lesson 1.

Write an expression for the composition of functions.
Find the domain of the composition of functions.
Evaluate the composition of functions.
Symmetry
Determine the symmetry of a relation from a graph.
Determine the symmetry of a function algebraically.
Piecewise Defined Functions
Graph piecewise defined functions
Evaluate piecewise defined functions.
Determine the domain, range, and continuity of piecewise defined functions.

Reading Lesson 1.2

Graphing Exponential Functions
Identify exponential functions.
Determine the domain and range of exponential functions.
Graph exponential functions.

Scope and Sequence

Unit Lesson
Base e

Modeling with Exponential and Logarithmic Equations

Reading Lesson 1.3
Parametric Equations

Reading Lesson 1.4
Function Inverses

Graphing Logarithmic Functions

Properties of Logarithms

Find the inverse of a function.
Use composition to verify that functions are inverses.

Identify logarithmic functions.
Determine the domain and range of logarithmic functions.
Identify and analyze the graphs of logarithmic functions.
Objectives

Apply properties of logarithms and exponents to solve exponential and logarithmic equations having base e.

Analyze exponential and logarithmic functions in base e to determine key features of the graph.
Determine the domain and range of exponential and logarithmic functions in base e.

Model and solve real-world problems using exponential and logarithmic functions.

Define curves parametrically.
Graph parametric equations.
Determine the Cartesian equation that contains a given parametric equation.

Evaluate, expand, and simplify logarithmic expressions using properties of logarithms.

AP Calculus AB - MA5186	Scope and Sequence
Unit Lesson	Objectives
Reading Lesson 1.5	
Radian Measure	Convert between degree and radian measure.
	Use the definition of radian measure to calculate arc lengths, radii, and angle measures.
Evaluating the Six Trigonometric Functions	Evaluate the six trigonometric functions for angles in degrees or radians based on one or more given trigonometric function values. Evaluate the six trigonometric functions for angles in degrees or radians given a point on the terminal ray.
Solving Trigonometric Equations	Analyze key features of inverse trigonometric functions from equations and graphs.
	Evaluate inverse trigonometric functions over a specified domain.
Modeling with Periodic Functions trigonometric equations over a specified domain.	

Find the domain of the composition of functions.
Determine the symmetry of a function algebraically.
Determine the domain, range, and continuity of piecewise-defined functions.
Apply properties of logarithms and exponents to solve exponential and logarithmic equations having base e.

Analyze exponential and logarithmic functions in base e to determine key features of the graph.

[^0]| AP Calculus AB - MA5186 | Scope and Sequence |
| :--- | :--- |
| Unit Lesson | Objectives |
| | Model and solve real-world problems using exponential and logarithmic functions. |
| | Evaluate, expand, and simplify logarithmic expressions using properties of logarithms. |
| | Evaluate the six trigonometric functions for angles in degrees or radians based on one or more |
| given trigonometric function values. | |
| | Analyze key features of inverse trigonometric functions from equations and graphs. |
| | Solve trigonometric equations over a specified domain. |
| | Model and solve real-world problems using periodic functions. |
| | Define curves parametrically. |

[^1]
Scope and Sequence

Unit Lesson
Objectives
Reading Lesson 2.2
Continuous Functions and Intermediate Value Theorem

Identify intervals of continuity and discontinuity over intervals of a function.
Identify types of discontinuity, including jump, infinite, and oscillating.
Modify or extend a function to remove discontinuities.
Use properties of continuous functions to determine function continuity over algebraic combinations.

Use the intermediate value theorem to verify continuity.

Reading Lesson 2.3

Slope, Tangent Line, and Normal Line
Calculate the average rate of change of a function.
Determine the slope of the tangent line at a point using limits.
Determine the equation of the tangent line to a curve at a given point.
Determine the equation of the normal line to a curve at a given point.

Reading Lesson 2.4

Unit 2 Project
Technology Corner
Unit Test

Determine average speed.
Compare average speed to instantaneous speed.
Identify conditions when a limit does and does not exist.
Define the limit of a function and the properties of limits.

Scope and Sequence

Unit Lesson
Objectives
Determine one-sided and two-sided limits of functions.
Use the sandwich theorem to find limits indirectly.
Determine end behavior of a function using limits.
Find vertical and horizontal asymptotes using limits.
Calculate limits as x goes to positive and negative infinity.
Identify intervals of continuity and discontinuity over intervals of a function.
Identify types of discontinuity, including jump, infinite, and oscillating.
Modify or extend a function to remove discontinuities.
Use properties of continuous functions to determine function continuity after algebraic combinations.

Use the intermediate value theorem to verify continuity.
Determine the slope of the tangent line at a point using limits.
Determine the equation of the tangent line at a given point.
Determine the equation of the normal line to a curve at a given point.
Calculate the average rate of change of a function.

Derivatives

Introduction to Unit 3
Derivatives of Functions

Determine the derivative of a function using the definition of a derivative.
Calculate the derivative of a function at a point.
Sketch a graph of the derivative of a function when given its graph.
Sketch a graph of a function when given the graph of its derivative.
Approximate the derivative of a function from a given data set.

AP Calculus AB - MA5186

Unit Lesson
AP Multiple Choice/Free Response
Unit Test

Compute the derivative of a function using the definition of a derivative.	
Compute the derivative of a function at a point.	
Sketch a graph of the derivative of a function when given its graph.	
	Sketch a graph of a function when given the graph of its derivative.
Sketch a graph of the derivative of a function when given a data set.	
	Determine if a function is differentiable on a closed interval.
Identify different types of non-differentiable points, including discontinuities, vertical tangents,	
corners, and cusps.	
Estimate derivatives using graphs and numerical approximation.	
Use the power rule to find derivatives.	
Use the product rule to find derivatives.	
Use the quotient rule to find derivatives.	
Calculate second derivatives and higher order derivatives using rules of differentiation.	
Use derivatives to solve problems involving motion in a straight line.	
Solve real-world problems involving rates of change using derivatives.	
Determine the derivatives of the six basic trigonometric functions using the rules of differentiation.	

More Derivatives

Introduction to Unit 4
Differentiating Functions Using the Chain Rule

Scope and Sequence

Objectives

Compute the derivative of a function using the definition of a derivative.
compute the derivative of a function at a point.

Sken a graph of the derivative of a function when given its graph.

Sketch a graph of a function when given the graph of its derivative.
Sketch a graph of the derivative of a function when given a data set corners, and cusps.

Use the power rule to find derivatives.

Apply the chain rule to find the derivative of a composite function.
Use the chain rule to determine the slopes of curves defined parametrically.

Scope and Sequence

Unit Lesson
Reading Lesson 4.1
Differentiating Functions Using Implicit
Differentiation

Reading Lesson 4.2
Differentiating Functions Containing Inverse Trigonometric Functions

Reading Lesson 4.3
Differentiating Exponential and Logarithmic Functions

Determine derivatives of inverse functions using the chain rule.
Determine derivatives of inverse trigonometric function.
Determine derivatives using implicit differentiation.
Use the power rule to find the derivative of a function raised to a rational power of x .

Calculate derivatives of exponential functions with a base of e.
Calculate derivatives of exponential functions with a base other than e.
Calculate derivatives of natural logarithmic functions.
Calculate derivatives of logarithmic functions with a base other than e.

Reading Lesson 4.4

Unit 4 Project
Technology Corner
Unit 4 AP Practice Questions
Unit Test
Apply the chain rule to find the derivative of a composite function.
Use the chain rule to determine the slope of curves defined parametrically.

AP Calculus AB - MA5186		Scope and Sequence
Unit	Lesson	Objectives
		Determine derivatives using implicit differentiation.
		Use the power rule to find the derivative of a function raised to a rational power of x .
		Determine derivatives of inverse functions using the chain rule.
		Determine derivatives of inverse trigonometric functions.
		Determine derivatives of exponential functions with a base of e.
		Determine derivatives of exponential functions with a base other than e.
		Determine derivatives of natural logarithmic functions.
		Determine derivatives of logarithmic functions with a base other than e.
Applications of Derivatives		
Introduction to Unit 5		
Relative and Absolute Extrema		
		Identify the relative minimum and maximum values of a function.
		Identify the absolute minimum and maximum values of a function.
		Determine if the extreme value theorem applies to a function on a specific interval.
		Determine critical points of a function.
Reading Lesson 5.1		
The Mean Value Theorem		
		Use the mean value theorem to determine the value where the derivative is equal to the average rate of change.
		Determine increasing and decreasing intervals of a function.
Reading Lesson 5.2		
First and Second Derivative Test		
		Use the first derivative test to determine relative extrema.

Scope and Sequence

Unit Lesson

Objectives
Determine increasing and decreasing intervals of a function.
Use the first derivative test to determine relative extrema.
Use the second derivative test to determine concavity and points of inflection.
Use the first and second derivative test to graph f from f^{\prime}.
Solve optimization problems using derivatives.
Approximate the change in f using differentials.
Use linearization to approximate tangent lines.
Use implicit differentiation to solve related rate problems.

Cumulative Exam

Cumulative Exam
Analyze key features of inverse trigonometric functions from equations and graphs.
Evaluate inverse trigonometric functions over a specified domain.
Compare average speed to instantaneous speed.
Identify conditions when a limit does and does not exist.
Define the limit of a function and the properties of limits.
Determine one-sided and two-sided limits of functions.
Use the sandwich theorem to find limits indirectly.
Determine end behavior of a function using limits.
Find vertical and horizontal asymptotes using limits.
Identify intervals of continuity and discontinuity over intervals of a function.
Use the intermediate value theorem to verify continuity.
Determine the equation of the tangent line at a given point.

AP Calculus AB - MA5186	Scope and Sequence
Unit Lesson	Objectives
	Determine the equation of the normal line to a curve at a given point.
	Compute the derivative of a function using the definition of a derivative.
	Compute the derivative of a function at a point.
	Sketch a graph of the derivative of a function when given its graph.
	Sketch a graph of a function when given the graph of its derivative.
	Sketch a graph of the derivative of a function when given a data set.
	Identify different types of non-differentiable points, including discontinuities, vertical tangents, corners, and cusps.
	Estimate derivatives using graphs and numerical approximation.
	Use the power rule to find derivatives.
	Use the product rule to find derivatives.
	Use the quotient rule to find derivatives.
	Calculate second derivatives and higher order derivatives using rules of differentiation.
	Solve motion along a straight line problems using derivatives.
	Determine the derivatives of the six basic trigonometric functions using the rules of differentiation.
	Apply the chain rule to find the derivative of a composite function.
	Determine derivatives using implicit differentiation.
	Use the power rule to find the derivative of a function raised to a rational power of x .
	Determine derivatives of inverse functions using the chain rule.
	Determine derivatives of inverse trigonometric functions.
	Determine derivatives of exponential functions with a base of e.
	Determine derivatives of exponential functions with a base other than e.
	Determine derivatives of natural logarithmic functions.

AP Calculus AB - MA5186
Unit Lesson

Introduction to Unit 6
Estimating with Finite Sums

Reading Lesson 6.1: Estimating with Finite Sums Definite Integrals

Reading Lesson 6.2: Definite Integrals

Use integral notation to express a limit of Riemann sums.
Evaluate a definite integral using an area formula
Use definite integrals to solve problems involving accumulation.
Evaluate definite integrals of functions with discontinuities.

Scope and Sequence

Objectives
Determine derivatives of logarithmic functions with a base other than e.
Use the extreme value theorem to determine if a function is continuous.
Use the mean value theorem to determine the value where the derivative is equal to the average change.

Use the second derivative test to determine concavity and points of inflection.
Use the first and second derivative test to graph f from f '.
Solve optimization problems using derivatives.
Approximate the change in f using differentials.
Use linearization to approximate tangent lines.
Use implicit differentiation to solve related rate problems.

Approximate a distance using area under a velocity curve.
Approximate the area under a curve by using left, right, and midpoint sums.
Solve accumulation problems by approximating the area under a curve.

AP Calculus AB - MA5186

Unit Lesson

Definite Integrals and Antiderivatives

Reading Lesson 6.3: Definite Integrals and Antiderivatives

Fundamental Theorem of Calculus, Parts 1 and 2

Reading Lesson 6.4: Fundamental Theorem of Calculus

Trapezoidal Rule

Reading Lesson 6.5: Trapezoidal Rule
Unit 6 Project
Technology Corner
Unit 6 AP Practice Questions
Unit Test

Use the first part of the fundamental theorem of calculus to solve problems.
Use the second part of the fundamental theorem of calculus to solve problems.

Approximate the area under a curve using the trapezoidal rule.
Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.

Scope and Sequence

Objectives

Solve problems using the properties of definite integrals.
Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval.

Calculate the area under a curve using antidifferentiation.

Approximate a distance using area under a velocity curve.
Approximate the area under a curve by using left, right, and midpoint sums.
Solve accumulation problems by approximating the area under a curve.
Use integral notation to express a limit of Riemann sums.

AP Calculus AB - MA5186

Unit Lesson

Scope and Sequence

Objectives
Evaluate a definite integral using an area formula.
Use definite integrals to solve problems involving accumulation.
Evaluate definite integrals of functions with discontinuities.
Solve problems using the properties of definite integrals.
Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval.

Calculate the area under a curve using antidifferentiation.
Use the first part of the fundamental theorem of calculus to solve problems.
Use the second part of the fundamental theorem of calculus to solve problems.
Approximate the area under a curve using the trapezoidal rule.
Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.

Mathematical Modeling Using Differential Equations

Introduction to Unit 7

Slope Fields

Use initial conditions to find solutions to differential equations.
Use a slope field to find a graphical solution for a given differential equation.

Verify an antiderivative formula.
Evaluate indefinite integrals without using substitution.
Use substitution as a method of evaluating indefinite and definite integrals.

Reading Lesson 7.2: Antidifferentiation by Substitution

Scope and Sequence

Unit Lesson
Exponential Growth and Decay
Objectives

Use separation of variables to solve initial value problems.
Use exponential functions to model growth and decay.
Predict temperatures by using Newton's law of cooling
Reading Lesson 7.4: Exponential Growth and Decay
Unit 7 Project
Technology Corner
Unit 7 AP Practice Questions
Unit Test
Use initial conditions to find solutions to differential equations.
Use a slope field to find a graphical solution for a given differential equation.
Evaluate indefinite integrals without using substitution.
Verify an antiderivative formula.
Use substitution as a method of evaluating indefinite and definite integrals.
Use separation of variables to solve initial value problems.
Use exponential functions to model growth and decay.

Applications of Definite Integrals

Introduction to Unit 8
Integral as Net Change

Calculate the displacement of an object from a given velocity function.
Calculate the total distance an object travels from a given velocity function.
Express the net change of a quantity as a definite integral.

AP Calculus AB - MA5186

Unit Lesson
Areas in the Plane

Reading Lesson 8.2: Areas in the Plane
Volumes

Reading Lesson 8.3: Volumes
Applications from Science and Statistics
Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to x.

Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to y.

Use subregions to calculate the area between two curves over a closed interval.

Use a definite integral to express the volume of a solid.
Find the volume of a solid with known cross sections.
Find the volume of a solid generated by revolving a line or curve around a given line.
Find the volume of a solid generated by revolving a region bounded by two or more lines or curves around a given line.

Use the definite integral to solve problems involving work.
Use the definite integral to solve problems involving fluid pressure.
Use the definite integral to solve problems involving probabilities.

Reading Lesson 8.5: Applications from Science and Statistics

L'Hospital's Rule and Other Applications

Page 18 of 25

AP Calculus AB - MA5186
Unit Lesson

Reading Lesson 9.2 and 9.3: L'Hospital's Rule and
Other Applications
Unit 8 Project
Technology Corner
Unit 8 AP Practice Questions
Unit Test

Scope and Sequence

Objectives
Apply L'Hospital's rule to evaluate the limit of an indeterminate form.
Compare the growth rates of functions.

Calculate the displacement of an object from a given velocity function.
Calculate the total distance an object travels from a given velocity function.
Express the net change of a quantity as a definite integral.
Find the net, or accumulated, change of a quantity from a rate of change function.
Find the net change of a quantity from a rate of change that is given in graphical or tabular form.
Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to x .

Calculate the area between two curves defined by only two functions and over a closed interval by integrating with respect to y .

Use subregions to calculate the area between two curves over a closed interval.
Use a definite integral to express the volume of a solid.
Find the volume of a solid with known cross sections.
Find the volume of a solid generated by revolving a line or curve around a given line.
Find the volume of a solid generated by revolving a region bounded by two or more lines or curves around a given line.

Apply l'Hopital's rule to evaluate the limit of an indeterminate form.

Scope and Sequence

Unit Lesson
Objectives
Compare the growth rates of functions.

Cumulative Exam

Cumulative Exam

Approximate a distance using area under a velocity curve.
Approximate the area under a curve by using left, right, and midpoint sums.
Solve accumulation problems by approximating the area under a curve.
Use integral notation to express a limit of Riemann sums.
Evaluate a definite integral using an area formula.
Use definite integrals to solve problems involving accumulation.
Evaluate definite integrals of functions with discontinuities.
Solve problems using the properties of definite integrals.
Apply the mean value theorem to determine a point at which a function assumes its average value over a closed interval.

Calculate the area under a curve using antidifferentiation.
Use the first part of the fundamental theorem of calculus to solve problems.
Use the second part of the fundamental theorem of calculus to solve problems.
Approximate the area under a curve using the trapezoidal rule.
Compare the trapezoidal rule to other area approximations including left, right, and midpoint sums.
Use initial conditions to find solutions to differential equations.
Use a slope field to find a graphical solution for a given differential equation.
Evaluate indefinite integrals without using substitution.
Verify an antiderivative formula.
Use substitution as a method of evaluating indefinite and definite integrals.

AP Calculus AB - MA5186	Scope and Sequence
Unit Lesson	Objectives
	Use separation of variables to solve initial value problems.
	Use exponential functions to model growth and decay.
	Calculate the displacement of an object from a given velocity function.
	Calculate the total distance an object travels from a given velocity function.
	Express the net change of a quantity as a definite integral.
	Find the net, or accumulated, change of a quantity from a rate of change function.
	Find the net change of a quantity from a rate of change that is given in graphical or tabular form.
	Calculate the area between two curves defined by only two functions and over a closed interval by
integrating with respect to x.	
	Calculate the area between two curves defined by only two functions and over a closed interval by
integrating with respect to y.	
	Use subregions to calculate the area between two curves over a closed interval.
	Use a definite integral to express the volume of a solid.
	Find the volume of a solid with known cross sections.
	Find the volume of a solid generated by revolving a line or curve around a given line.
	Find the volume of a solid generated by revolving a region bounded by two or more lines or curves
around a given line.	
	Use the definite integral to solve problems involving work.
	Use the definite integral to solve problems involving fluid pressure.
	Use the definite integral to solve problems involving probabilities.
Apply l'Hopital's rule to evaluate the limit of an indeterminate form.	

Review

Preparing for the Exam

AP Calculus AB - MA5186
Unit Lesson
Review: Limits and Continuity
Review: Derivatives
Review: Applications of Derivatives
Review: Integrals
Review: Applications of Integrals
Review: Differential Equations
Practice Exam 1 - Part A

Scope and Sequence

Objectives

Express limits symbolically using correct notation.
Interpret limits expressed symbolically.
Estimate limits of functions.
Determine limits of functions.
Deduce and interpret behavior of functions using limits.
Analyze functions for intervals of continuity or points of discontinuity.
Determine the applicability of important calculus theorems using continuity.
Identify the derivative of a function as the limit of a difference quotient.
Calculate derivatives.
Determine higher-order derivatives.
Recognize the connection between differentiability and continuity.
Interpret the meaning of a derivative within a problem.
Verify solutions to differential equations.
Recognize antiderivatives of basic functions.
Interpret the definite integral as the limit of a Riemann sum in integral notation.

AP Calculus AB - MA5186

Scope and Sequence

Objectives
Express the limit of a Riemann sum in integral notation.
Calculate a definite integral using areas and properties of definite integrals.
Analyze functions defined by an integral.
Calculate antiderivatives.
Evaluate definite integrals.
Interpret the meaning of a definite integral within a problem.
Apply definite integrals to problems involving the average value of a function.
Analyze differential equations to obtain general and specific solutions.
Solve problems involving slope of a tangent line.

Estimate derivatives.
Use derivatives to analyze properties of a function.
Solve problems involving slope of a tangent line.
Solve problems involving related rates, optimization, and rectilinear motion.
Solve problems involving rates of change in applied contexts.
Estimate solutions to differential equations.
Apply the mean value theorem to describe the behavior of a function over an interval.
Approximate a definite integral.
Apply definite integrals to problems involving motion.
Apply definite integrals to problems involving areas and volume.
Use the definite integral to solve problems in various contexts.
Interpret, create, and solve differential equations from problems in contexts.

Scope and Sequence

Unit Lesson
Practice Exam 1 - Free-Response Section
Practice Exam 2 - Part A

Objectives

Express limits symbolically using correct notation.
Interpret limits expressed symbolically.
Estimate limits of functions.
Determine limits of functions.
Deduce and interpret behavior of functions using limits.
Analyze functions for intervals of continuity or points of discontinuity.
Determine the applicability of important calculus theorems using continuity.
Identify the derivative of a function as the limit of a difference quotient.
Calculate derivatives.
Determine higher-order derivatives.
Recognize the connection between differentiability and continuity.
Interpret the meaning of a derivative within a problem.
Verify solutions to differential equations.
Recognize antiderivatives of basic functions.
Interpret the definite integral as the limit of a Riemann sum in integral notation.
Express the limit of a Riemann sum in integral notation.
Calculate a definite integral using areas and properties of definite integrals.
Analyze functions defined by an integral.
Calculate antiderivatives.
Evaluate definite integrals.

AP Calculus AB - MA5186	Scope and Sequence
Unit Lesson	Objectives
	Interpret the meaning of a definite integral within a problem.
	Apply definite integrals to problems involving the average value of a function.
	Analyze differential equations to obtain general and specific solutions.
	Solve problems involving slope of a tangent line.
	Estimate derivatives.
	Use derivatives to analyze properties of a function.
	Solve problems involving slope of a tangent line.
	Solve problems involving related rates, optimization, and rectilinear motion.
	Solve problems involving rates of change in applied contexts.
	Estimate solutions to differential equations.
	Apply the Mean Value Theorem to describe the behavior of a function over an interval.
	Approximate a definite integral.
	Apply definite integrals to problems involving areas and volume.
	Use the definite integral to solve problems in various contexts.
	Interpret, create, and solve differential equations from problems in contexts.
	Apply definite integrals to problems involving motion.

[^0]: Page 3 of 25

[^1]: Page 4 of 25

