## AP Statistics - MA5188

## Scope and Sequence

## Unit Lesson

## Objectives

## Data Analysis

Introduction to AP Statistics
Introduction to Unit 1
Introduction to Statistics
Identify an individual from a set of data.
Identify a variable from a set of data.
Classify a variable as categorical, discrete quantitative, or continuous quantitative.
Reading Lesson Introduction
Categorical Data Displays
Identify a frequency table and a relative frequency table given data.
Determine if a graphical display is appropriate for a given data set.
Interpret a bar graph or pie chart.
Determine what makes a graph of categorical data deceptive.
Reading Lesson 1.1, Part 1
Relative Frequencies
Complete a two-way table, and calculate marginal and conditional distributions.
Given a two-way table, calculate marginal and joint relative frequency distributions.
Given a two-way table, calculate conditional relative frequency distributions.
Create marginal relative frequency distributions.
Create conditional relative frequency distributions.
Interpret frequencies appropriately when given data from samples that differ considerably in sample size for two categorical variables.

## Scope and Sequence

Unit Lesson
Reading Lesson 1.1, Part 2
Comparing Two Categorical Variables

Decide whether two categorical variables are associated using segmented or side-by-side bar graphs.
Use appropriate phrasing in the depth and detail required by the College board to compare and contrast

## Reading Lesson 1.1, Part 3

Describing and Comparing Data with Dotplots and Stemplots

Identify and/or describe a dotplot.
Identify and/or describe a stemplot.
Compare two distributions using dotplots or stemplots.
Reading Lesson 1.2, Part 1
Describing and Comparing Data with Histograms

Identify the patterns, shape, and spread of a distribution using histograms.
Relate measures of center to the shape of a distribution using histograms.
Compare two distributions using histograms.

## Reading Lesson 1.2, Part 2

Measures of Center and Location

Compare distributions of categorical data using segmented or side-by-side bar graphs. categorical variables.

Display three categorical variables in side-by-side bar graphs.
Objectives

Calculate measures of center, given a data set or a graphical display.
Interpret the measures of center.
Analyze the effect of extreme values on the value of the mean and median.

## AP Statistics - MA5188

Unit Lesson

Reading Lesson 1.3, Part 1
Measures of Variability

## Scope and Sequence

## Objectives

Analyze the relationship between center and shape.

Calculate the range, standard deviation, or interquartile range of a univariate data set.
Interpret the range, standard deviation, or interquartile range of a univariate data set.
Compare the spread given graphical displays of two univariate data sets.
Use a graphing calculator to compute the numerical summary of a univariate data set.

## Reading Lesson 1.3, Part 2

Boxplots and Outliers
Identify if a univariate data set contains any outliers.
Represent univariate data using a boxplot.
Compare distributions presented in parallel boxplots.
Identify the percent and number of values lying in each portion of a boxplot.
Create a boxplot using a graphing calculator.

## Reading Lesson 1.3, Part 3

The AP Statistics Exam: Multiple-Choice and Free-Response Sections

Unit 1 Test

Classify variables as categorical, discrete quantitative, or continuous quantitative.
Interpret a bar graph or pie chart.
Given a two-way table, calculate marginal and joint relative frequency distributions.
Given a two-way table, calculate conditional relative frequency distributions.
Decide whether two categorical variables are associated using segmented or side-by-side bar graphs.

## Scope and Sequence

## Unit Lesson

Objectives
Identify and/or describe a dotplot
Identify and/or describe a stemplot.
Compare two distributions using dotplots or stemplots.
Identify patterns, shape, and spread of a distribution using histograms.
Relate measures of center to shape of a distribution using histograms.
Compare two distributions using histograms.
Interpret the measures of center.
Analyze the effect of extreme values on the value of the mean and median.
Analyze the relationship between center and shape.
Calculate/interpret the range, standard deviation, or interquartile range of a univariate data set.
Compare the spread given graphical displays of two univariate data sets.
Identify if a univariate data set contains any outliers.
Compare distributions presented in parallel box plots.

## The Normal Distribution

Introduction to Unit 2
Describing Location within a Distribution
Calculate the percentile for individual values in a quantitative data set.
Interpret the percentile for individual values in a quantitative data set.
Estimate the percentile of a value given a cumulative relative frequency graph.

## Reading Lesson 2.1, Part 1

Calculating and Interpreting z-Scores

## AP Statistics - MA5188

Unit Lesson

## Scope and Sequence

Objectives
Interpret a z-score.
Compare performance using two or more z-scores.
Calculate a data value given a z-score, standard deviation, and mean.
Compare performance using three or more z-scores.

## Reading Lesson 2.1, Part 2 <br> Effect of Linear Transformations

Describe the center, shape, and spread of a distribution whose values have been transformed by adding or subtracting a constant value.

Describe the center, shape, and spread of a distribution whose values have been transformed by multiplying or dividing by a constant value.

Describe the center, shape, and spread of a distribution whose values have been transformed by a combination of addition or subtraction and by multiplying or dividing by a constant value.

Reading Lesson 2.1, Part 3 Uniform Density Curves

Describe a density curve.
Calculate probabilities using the appropriate area within a uniform density curve.
Estimate the mean and median value of a density curve.
Reading Lesson 2.2, Part 1
Normal Distributions

Describe the properties of a Normal distribution.
Describe a Normal distribution using the empirical rule.
Calculate probabilities using the empirical rule.

Reading Lesson 2.2, Part 2
Finding Areas within a Normal

## AP Statistics - MA5188

Unit Lesson
Distribution

## Scope and Sequence

Objectives

Estimate the proportion of values in a Normal distribution to the left of a value or to the right of a value using a Normal distribution table.

Estimate the proportion of values in a Normal distribution between two values using a Normal distribution table.

Estimate the proportion of values in a Normal distribution for inclusive intervals of less than or equal to, greater than or equal to, or between and including values.

Estimate the proportion of values in a Normal distribution using a graphing calculator.
Estimate the proportion of values in a standard Normal distribution using a graphing calculator.
Reading Lesson 2.2, Part 3
Finding Values from Probabilities
Determine the z-score for a given probability.
Determine the data-value, $x$, in a Normal distribution for a given percentile.
Determine the value in a Normal distribution that bounds a given area, using a graphing calculator.
Reading Lesson 2.2, Part 4
Assessing Normality
For a set of quantitative data, decide if the distribution is approximately Normal using graphical evidence.
For a set of quantitative data, decide if the distribution is approximately Normal using numerical evidence.
For a set of quantitative data, decide if the distribution is approximately Normal using a Normal probability plot.

Reading Lesson 2.2, Part 5
Unit 2 AP Practice Free-Response Questions

Unit 2 Test

Calculate the percentile for individual values in a quantitative data set.

## Page 6 of 40

## Scope and Sequence

## Unit Lesson

## Objectives

Interpret the percentile for individual values in a quantitative data set.
Interpret a z-score.
Compare performance using two or more $z$-scores.
Calculate a data value given a z-score, standard deviation, and mean.
Describe the center, shape and spread of a distribution whose values have been transformed by adding or subtracting a constant value.

Describe the center, shape and spread of a distribution whose values have been transformed by multiplying or dividing by a constant value.

Describe the center, shape, and spread of a distribution whose values have been transformed by a combination of addition or subtraction and by multiplying or dividing by a constant value.

Describe a density curve. Estimate the mean and median value of a density curve.
Calculate probabilities using the appropriate area within a uniform density curve.
Describe the properties of a normal distribution.
Calculate probabilities using the empirical rule.
Estimate the proportion of values in a Normal distribution to the left of a value or to the right of a value using a Normal distribution table.

Estimate the proportion of values in a Normal distribution between two values using a Normal distribution table.

Estimate the proportion of values in a Normal distribution for inclusive intervals of less than or equal to, greater than or equal to, or between and including values.

Estimate the proportion of values in a Normal distribution using a graphing calculator.
Determine the $z$-score for a given probability.
For a set of quantitative data, decide if the distribution is approximately Normal using graphical evidence.
For a set of quantitative data, decide if the distribution is approximately Normal using numerical evidence.
For a set of quantitative data, decide if the distribution is approximately Normal using a Normal probability plot.

## Unit Lesson

Objectives

## Simple Linear Regression

Introduction to Unit 3
The Relationship between Two
Quantitative Variables
Identify the explanatory and response variable.
Represent two quantitative variables using a scatterplot.
Describe the direction, form, strength, and unusual observations given a scatterplot.
Create a scatterplot using a graphing calculator.
Reading Lesson 3.1, Part 1
Correlation
Interpret the correlation of a linear relationship between two quantitative variables.
Describe the effect of unusual observations on the correlation.
Distinguish between correlation and causation.

## Reading Lesson 3.1, Part 2

Making Predictions from a
Least-Squares Regression Line
Interpret the slope and $y$-intercept of a linear model.
Make a prediction using a linear model.
Reading Lesson 3.2, Part 1
Calculating the Least-Squares
Regression Line
Explain why the line that is the best fit for a linear relationship is called the least-squares regression line.
Compute a least-squares regression line and correlation using technology.
Identify a least-squares regression line using computer output.

Unit Lesson
Reading Lesson 3.2, Part 2
Residuals

|  | Calculate residuals. |
| :---: | :---: |
|  | Create a residual plot. |
|  | Assess linearity based upon a residual plot. |
|  | Create a residual plot on the graphing calculator. |
| Reading Lesson 3.2, Part 3 |  |
| R-squared and s |  |
|  | Determine r 2 using a graphing calculator or computer output. |
|  | Interpret r2 and s in context. |
|  | Identify s. |
|  | Describe the effect that influential points have on the least-squares regression line. |
| Reading Lesson 3.2, Part 4 |  |
| Calculating a Least-Squares Regression Line from Summary Statistics |  |

Calculate the slope of a least-squares regression line from summary statistics.
Calculate the $y$-intercept of a least-squares regression line from summary statistics.
Write the equation of a least-squares regression line from summary statistics.

## Reading Lesson 3.2, Part 5

Transforming to Achieve Linearity

Objectives

Determine r 2 using a graphing calculator or computer output.
Interpret r2 and s in context.
s
Describe the effect that influential points have on the least-squares regression line.

Transform a nonlinear data set using powers, roots, or logarithms.
Write the equation of a least-squares regression line that describes a transformed data set given computer output.

## AP Statistics - MA5188

Unit Lesson

Reading Lesson 3.3, Part 1
Choosing the Best Model
Assess how well a model fits a given data set.
Choose an appropriate model for a bivariate data set given regression output and residual plots.
Make a prediction based on the computer output provided for various regression models.
Reading Lesson 3.3, Part 2
Unit 3 AP Practice Free-Response Questions

Unit 3 Test
Identify the explanatory and response variable. Represent two quantitative variables using a scatterplot.
Describe the direction, form, strength, and unusual observations given a scatterplot.
Interpret the correlation of a linear relationship between two quantitative variables.
Describe the effect of unusual observations on the correlation.
Distinguish between correlation and causation.
Interpret the slope and y-intercept of a linear model.
Make a prediction using a linear model.
Explain why the line that is the best fit for a linear relationship is called the least-squares regression line.
Identify a least-squares regression line using computer output.
Calculate residuals.
Assess linearity based upon a residual plot.
Determine $r^{\wedge} 2$ using a graphing calculator or computer output.


[^0]
## AP Statistics - MA5188

## Scope and Sequence

Unit Lesson

Considerations When Sampling

Reading Lesson 4.1, Part 3

Objectives
Describe the process and/or advantages and disadvantages of cluster sampling.
Distinguish between stratified random sampling, systematic random sampling, and cluster sampling.

Describe the sampling problems of undercoverage, nonresponse, response, and question-wording bias.
Identify whether a study is affected by undercoverage, nonresponse, response, or question-wording bias.
Describe the direction of the bias presented in a study.

## Reading Lesson 4.1, Part 4 <br> Sampling Project <br> Observational Studies and Experiments

Distinguish between an observational study and an experiment.
Describe the effect of confounding.
Identify the explanatory variable, response variable, treatments, experimental units/subjects, factors, and levels of an experimental design.

Reading Lesson 4.2, Part 1
Additional Principles of Experimental Design

Identify the benefits of using the principle of comparison within an experimental design.
Identify the placebo effect, as well as the benefits of blindness, within an experimental design.
Identify the benefits of using the principle of random assignment within an experimental design.
Identify the benefits of using the principle of control and replication within an experimental design.

## Reading Lesson 4.2, Part 2

How to Experiment Well

## Page 12 of 40

## AP Statistics - MA5188

Unit Lesson

Reading Lesson 4.2, Part 3
Experimental Designs

Reading Lesson 4.2, Part 4
Scope of Inference

## Scope and Sequence

## Objectives

Identify the reason for randomization for a well-constructed experimental design.
Describe the randomization step within an experimental design using slips of paper.
Describe the randomization step within an experimental design using a table of random digits.
Describe the randomization step within an experimental design using a random number generator.

Describe the structure of a completely randomized design, including details about the randomization process.
Describe the structure of a randomized block design, including details about the randomization process.
Describe the structure of the matched pairs version of a randomized block design, including details about the randomization process.

Describe the concept of sampling variability with regards to the size of the sample.
Determine if the results of an experiment are statistically significant based upon simulated results.
Determine the appropriate scope of inference for the study design used.

[^1]Identify whether a study utilized convenience sampling or voluntary response sampling.
Analyze a study to determine if bias is present and whether that bias leads to an over or underestimate of the population parameter.

Describe the process of simple random sampling.
Describe the process and/or advantages and disadvantages of stratified random sampling.

## Page 13 of 40

| AP Statistics - MA5188 | Scope and Sequence |
| :--- | :--- |
| Unit Lesson | Objectives |
|  | Describe the process and/or advantages and disadvantages of cluster sampling. |
|  | Distinguish between stratified random sampling, systematic random sampling, and cluster sampling. |
|  | Describe the sampling problems of undercoverage, nonresponse, response, and question wording bias. |
|  | Identify whether a study is affected by undercoverage, nonresponse, response, or question wording bias. |
|  | Distinguish between an observational study and an experiment. |
|  | Describe the effect of confounding. |
|  | Identify the explanatory variable, response variable, treatments, experimental units/subjects, the factors and |
| the levels of an experimental design. |  |
|  | Identify the placebo effect, as well as the benefits of blindness within an experimental design. |
|  | Identify the benefits of using the principle of control and replication within an experimental design. |
|  | Identify the reason for randomization for a well-constructed experimental design. |
|  | Describe the randomization step within an experimental design using slips of paper. |
|  | Describe the randomization step within an experimental design using a random number generator. |

[^2]
## AP Statistics - MA5188

Unit Lesson

Reading Lesson 5.1
Probability Rules
Identify a probability model to describe a random process.
Apply the basic probability rules, which indicate that the probability of an event is a number between 0 and 1 and that the sum of the probabilities of all outcomes in the sample space is 1 .

Apply the complement rule and the addition rule for mutually exclusive events.
Reading Lesson 5.2, Part 1
Applying Probability Rules

Reading Lesson 5.2, Part 2
Conditional Probabilities
Calculate a conditional probability.
Interpret a conditional probability.
Determine if two events are independent.

## Reading Lesson 5.3, Part 1

The Multiplication Rule for Dependent Events

Calculate a probability using the general multiplication rule.
Use a tree diagram to determine the sample space.
Calculate a probability using a tree diagram.

[^3]
## AP Statistics - MA5188

## Scope and Sequence

Unit Lesson
Objectives
The Multiplication Rule for Independent Events

Calculate a probability using the multiplication rule for independent events.
Calculate the probability of "at least one" using the multiplication rule for independent events or other multi-step probabilities.

Determine if it is appropriate to use the multiplication rule for independent events, the addition rule for mutually exclusive events, or neither.

Reading Lesson 5.3, Part 3
Unit 5 AP Practice Free-Response Questions

Unit 5 Test
Interpret probability as the long-run relative frequency of an event.
Describe the law of large numbers.
Describe how a simulation is used to imitate a random process.
Simulate chance behavior.
Create a probability model to describe a random process.
Apply the basic probability rules which indicate that the probability of an event is a number between 0 and 1 and that the sum of the probabilities all outcomes in the sample space is 1.

Apply the complement rule and the addition rule for mutually exclusive events
Determine probabilities using a two-way table.
Determine probabilities using a Venn diagram.
Calculate a conditional probability.
Interpret a conditional probability.
Determine if two events are independent.
Calculate a probability using the general multiplication rule.

## AP Statistics - MA5188

Unit Lesson

## Random Variables

Introduction to Unit 6
Introduction to Random Variables

Reading Lesson 6.1, Part 1
Discrete Random Variables - Mean

## Reading Lesson 6.1, Part 2

Continuous Random Variables

Calculate the mean, median, and/or standard deviation of the probability distribution of a discrete random variable.

Interpret the standard deviation of the probability distribution of a discrete random variable.
Compare the shape, center, and/or variability given two probability distribution histograms.

## Scope and Sequence

## Objectives

Identify a tree diagram
Calculate a probability using a tree diagram.
Calculate a probability using the multiplication rule for independent events.
Calculate the probability of "at least one" using the multiplication rule for independent events and other multi-step probabilities.

Determine if it is appropriate to use the multiplication rule for independent events, the addition rule for mutually exclusive events, or neither.

Calculate the probability of an event given a probability distribution of a discrete random variable. Interpret the probability of an event given a probability distribution of a discrete random variable. Identify a probability distribution histogram of a discrete random variable.

Describe the shape of a probability distribution histogram of a discrete random variable.

Distinguish between a discrete and a continuous random variable.
Calculate a probability or value for a uniform random variable.

## Page 17 of 40

## Scope and Sequence

Unit Lesson
Objectives
Determine the mean of a uniform random variable.
Calculate a probability or value for a Normal random variable.

Reading Lesson 6.1, Part 3<br>Transforming Random Variables

Calculate the measures of center and variability of a transformed random variable.
Interpret the mean and standard deviation of a transformed random variable.
Calculate a probability of a value within the distribution of a transformed random variable.

## Reading Lesson 6.2, Part 1

Combining Two Random Variables
Calculate the mean and standard deviation of the sum or difference of two or more random variables.
Interpret the mean and standard deviation of the sum or difference of two or more random variables.
Calculate a probability based upon the sum or difference of two or more random variables.
Calculate the mean and standard deviation of a linear combination of random variables.

## Reading Lesson 6.2, Part 2

Binomial Random Variables
Determine if a scenario describes a binomial setting.
Calculate the mean and standard deviation of a binomial random variable.
Describe the shape, center, and/or variability of a probability histogram of a binomial random variable.
Reading Lesson 6.3, Part 1
Binomial Probabilities
Calculate the binomial probability $\mathrm{P}(\mathrm{X}=\mathrm{k})$ using the binomial probability formula.
Calculate cumulative binomial probabilities using the binomial probability formula.

## Page 18 of 40

| AP Statistics - MA5188 | Scope and Sequence |
| :--- | :--- |
| Unit Lesson | Objectives |
|  | Approximate binomial probabilities using a Normal distribution. |
|  | Calculate the binomial probability $\mathrm{P}(\mathrm{X}=\mathrm{k})$ using a graphing calculator. |
|  | Calculate cumulative binomial probabilities using a graphing calculator. |
| Reading Lesson 6.3, Part 2 | Cetermine if a scenario describes a geometric setting. |
| Geometric Random Variables | Calculate a geometric probability using the geometric probability formula. |
| Calculate a geometric probability using a graphing calculator. |  |
| Reading Lesson 6.3, Part 3 |  |

[^4]
## AP Statistics - MA5188

## Unit Lesson

## Scope and Sequence

## Objectives

Calculate a probability based upon the sum or difference of two or more random variables.
Calculate the mean and standard deviation of a binomial random variable.
Calculate binomial probabilities using the binomial probability formula.
Calculate the binomial probability $\mathrm{P}(\mathrm{X}=\mathrm{k})$ using a graphing calculator.
Calculate cumulative binomial probabilities using a graphing calculator.
Calculate the mean and standard deviation of a geometric random variable.
Calculate a geometric probability using a graphing calculator.

## Cumulative Exam 1

Cumulative Exam

## Sampling Distributions

Introduction to Unit 7
Introduction to Sampling Distributions
Identify the population, parameter, sample, and statistic given a scenario.
Identify a sampling distribution.
Distinguish between the population distribution, sample distribution, and a sampling distribution of a statistic.
Reading Lesson 7.1, Part 1
Sampling Distributions - Center and Variability

Evaluate a claim about a population parameter based upon a sampling distribution of a statistic.
Determine if a sample statistic is an unbiased estimator of the population parameter.
Describe the variability of a sampling distribution as it relates to the size of the sample.

## AP Statistics - MA5188

Unit Lesson
Proportion

Reading Lesson 7.2, Part 1
Calculating Probabilities for Sampling Distribution

Reading Lesson 7.2, Part 2
Sampling Distribution of the Sample Mean

Reading Lesson 7.3, Part 1
Using the Central Limit Theorem

## Scope and Sequence

Objectives

Determine the shape, mean, and/or standard deviation of the sampling distribution of the sample proportion.
Determine the shape, mean, and/or standard deviation of the sampling distribution of the difference in two sample proportions.

Interpret the standard deviation of the sampling distribution of the sample proportion or the sampling distribution of the difference in two sample proportions.

Calculate a probability based upon the sampling distribution of $p$-hat $1-p$-hat2.
Determine if there is convincing evidence against a claim based upon a calculated probability.

Describe the shape of the sampling distribution of the sample mean.
Describe the shape, mean, and/or standard deviation of the sampling distribution of the sample mean.
Describe the shape, mean, and/or standard deviation of the sampling distribution of the difference in two sample means.
difference in sample means.
Calculate probabilities given a non-Normal population, when appropriate, based upon the sampling distribution of the sample mean or difference in sample means.

Reading Lesson 7.3, Part 2

Unit Lesson
Unit 7 AP Practice Free-Response Questions

## Unit 7 Test

## Objectives

Identify the population, parameter, sample, and statistic given a scenario.
Identify a sampling distribution.
Distinguish between the population distribution, sample distribution, and a sampling distribution of a statistic.
Evaluate a claim about a population parameter based upon a sampling distribution of a statistic.
Determine if a sample statistic is an unbiased estimator of the population parameter.
Describe the variability of a sampling distribution as it relates to the size of the sample.
Determine the shape, mean and/or standard deviation of the sampling distribution of the sample proportion.
Determine the shape, mean and/or standard deviation of the sampling distribution of the difference in two sample proportions.

Interpret the standard deviation of the sampling distribution of the sample proportion or the sampling distribution of the difference in two sample proportions.

Calculate a probability based upon the sampling distribution of p-hat.
Calculate a probability based upon the sampling distribution of p-hat1 - p-hat2.
Determine if there is convincing evidence against a claim based upon a calculated probability.
Describe the shape of the sampling distribution of the sample mean.
Describe the shape, mean and/or standard deviation of the sampling distribution of the sample mean.
Describe the shape, mean and/or standard deviation of the sampling distribution of the difference in two sample means.

Calculate probabilities given a normal population based upon the sampling distribution of the sample mean or difference in sample means.

Calculate probabilities given a non-normal population, when appropriate, based upon the sampling distribution of the sample mean or difference in sample means.

## AP Statistics - MA5188

## Scope and Sequence

Unit Lesson
Objectives

## Estimating Proportions with Confidence

Introduction to Unit 8
Introduction to Confidence Intervals
Calculate the value of a point estimate and/or the margin of error of a given confidence interval.
Interpret a confidence interval.
Evaluate a claim about a population parameter given a confidence interval.
Reading Lesson 8.1, Part 1
More about Confidence Intervals

## Reading Lesson 8.1, Part 2

Preparing to Estimate a Population Proportion

## Interpret the confidence level.

Determine how the margin of error and width of the interval is affected by the confidence level and sample size.

Identify the sources of variability that are and are not accounted for by the margin of error in a confidence interval.

Verify if each of the conditions for calculating a confidence interval for a population proportion are met.
Determine the critical value for a specific confidence level for a population proportion using a table and technology.

Calculate the point estimate and standard error of the sample proportion.

## Reading Lesson 8.2, Part 1

Estimating a Population Proportion

Construct a confidence interval for a population proportion.
Evaluate a claim about a population proportion based upon a calculated confidence interval.

## AP Statistics - MA5188

## Scope and Sequence

Unit Lesson
Objectives
Calculate the minimum sample size that is needed to construct a confidence interval for a population proportion with a given confidence level and a given margin of error.

Reading Lesson 8.2, Part 2
Estimating the Difference between Two Population Proportions

Determine whether the conditions for calculating a confidence interval for a difference in two population proportions are met.

Construct a confidence interval for a difference in two population proportions.
Evaluate a claim about a difference in two population proportions based upon a calculated confidence interval.
Construct a confidence interval for a difference in two population proportions using a graphing calculator.
Reading Lesson 8.3
Unit 8 AP Practice Free-Response Questions

Unit 8 Test
Calculate the value of a point estimate and/or the margin of error of a given confidence interval.
Interpret a confidence interval.
Evaluate a claim about a population parameter given a confidence interval.
Interpret the confidence level.
Determine how the margin of error and width of the interval is affected by the confidence level and sample size.

Identify the sources of variability that are and are not accounted for by the margin of error in a confidence interval.

Verify if each of the conditions for calculating a confidence interval for a population proportion are met.
Determine the critical value for a specific confidence level for a population proportion using a table and technology.

Calculate the point estimate and standard error of the sample proportion.

## AP Statistics - MA5188

## Unit Lesson

## Scope and Sequence

## Objectives

Construct a confidence interval for a population proportion.
Evaluate a claim about a population proportion based upon a calculated confidence interval.
Calculate the minimum sample size that is needed to construct a confidence interval for a population proportion with a given confidence level and a given margin of error.

Construct a confidence interval for a population proportion using a graphing calculator
Determine whether the conditions for calculating a confidence interval for a difference in two population proportions are met.

Construct a confidence interval for a difference in two population proportions.
Evaluate a claim about a difference in two population proportions based upon a calculated confidence interval.
Construct a confidence interval for a difference in two population proportions using a graphing calculator.

## Testing Claims about Proportions

```
Introduction to Unit 9
Introduction to Hypothesis Testing
```

Reading Lesson 9.1, Part 1 Type I and Type II Errors

State appropriate hypotheses for performing a hypothesis test about a population proportion.
Interpret the P -value.
Draw a conclusion based upon the P -value.

Describe and give a consequence of a Type I and Type II error.
Estimate a P-value based upon the results of a simulation.
Draw a conclusion based upon an estimated P -value.

[^5]
## Page 25 of 40

## AP Statistics - MA5188

Unit Lesson
Reading Lesson 9.2, Part 1
Testing a Claim about a Population
Proportion Proportion

## Reading Lesson 9.2, Part 2 <br> Testing a Claim about a Difference between Proportions

## Scope and Sequence

## Objectives

Determine if the conditions needed to carry out a significance test about a population proportion are met.
Calculate the test statistic and the P -value for a significance test about a population proportion.
Draw a conclusion based upon a calculated P-value.

Conduct a hypothesis test about a population proportion.
Conduct a hypothesis test about a population proportion given computer output.
Describe the power of a test and/or what influences the power of a test.

Calculate a test statistic and P-value for a hypothesis test about a population proportion using a graphing calculator.

Perform one step of a hypothesis test for a difference in two population proportions.
Conduct a hypothesis test about a difference in two population proportions.
Calculate a test statistic and P-value for a hypothesis test about a population proportion using a graphing calculator.

State appropriate hypotheses for performing a hypothesis test about a population proportion Interpret the P-value

Draw a conclusion based upon the P -value.

## Scope and Sequence

## Unit Lesson

## Objectives

Describe and give a consequence of a Type I and Type II error.
Estimate a P-value based upon the results of a simulation.
Draw a conclusion based upon an estimated P -value.
Determine if the conditions needed to carry out a hypothesis test about a population proportion are met.
Calculate the test statistic and the P -value for a hypothesis test about a population proportion.
Draw a conclusion based upon a calculated P -value.
Conduct a hypothesis test about a population proportion.
Conduct a hypothesis test about a population proportion given computer output.
Describe the power of a test and/or what influences the power of a test.
Calculate a test statistic and P -value for a hypothesis test about a population proportion using a graphing calculator.

Perform one step of a hypothesis test for a difference in two population proportions.
Conduct a hypothesis test about a difference in two population proportions.
Calculate a test statistic and P -value for a hypothesis test about a difference in two population proportions using a graphing calculator.

## Estimating Means with Confidence

Introduction to Unit 10
Preparing to Estimate a Population Mean

Determine the t critical value needed to compute a C\% confidence interval for a population mean.
Determine if the conditions required to compute a C\% confidence interval for a population mean are met.
Calculate the standard error of the mean.
Interpret the standard error of the mean.

[^6]
## AP Statistics - MA5188

Unit Lesson
Estimating a Population Mean

|  | Construct a confidence interval for a population mean. |
| :---: | :---: |
|  | Evaluate a claim about a population mean based upon a calculated confidence interval. |
|  | Describe how the margin of error of a confidence interval can be reduced. |
|  | Construct a confidence interval for a population mean using a graphing calculator. |
| Reading Lesson 10.1, Part 2 |  |
| Estimating a Difference in Two Population Means |  |
|  | Determine if the conditions required to compute a confidence interval for a difference in two population means are met. |
|  | Construct a confidence interval for a difference in two population means. |
|  | Evaluate a claim about the difference in the population means based upon a calculated confidence interval. |
|  | Construct a confidence interval for a difference in two population means using a graphing calculator. |
| Reading Lesson 10.2, Part 1 |  |
| Estimating the Mean Difference |  |
|  | Calculate the mean difference and the standard deviation of the differences for paired data. |
|  | Construct a confidence interval for a mean difference. |
|  | Evaluate a claim about a population mean difference based upon a confidence interval. |
|  | Construct a confidence interval for a mean difference using a graphing calculator. |
| Reading Lesson 10.2, Part 2 |  |
| Unit 10 AP Practice Free-Response Questions |  |
| Unit 10 Test |  |

Determine the t critical value needed to compute a $\mathrm{C} \%$ confidence interval for a population mean.

| AP Statistics - MA5188 |  | Scope and Sequence |
| :---: | :---: | :---: |
| Unit | Lesson | Objectives |
|  |  | Determine if the conditions required to compute a C\% confidence interval for a population mean are met. |
|  |  | Calculate the standard error of the mean. |
|  |  | Interpret the standard error of the mean. |
|  |  | Construct a confidence interval for a population mean. |
|  |  | Evaluate a claim about a population mean based upon a calculated confidence interval. |
|  |  | Describe how the margin of error of a confidence interval can be reduced. |
|  |  | Determine if the conditions required to compute a confidence interval for a difference in two population means are met. |
|  |  | Construct a confidence interval for a difference in two population means. |
|  |  | Evaluate a claim about the difference in the population means based upon a calculated confidence interval. |
|  |  | Calculate the mean difference and the standard deviation of the differences for paired data. |
|  |  | Construct a confidence interval for a mean difference. |
|  |  | Evaluate a claim about a population mean difference based upon a confidence interval. |
| Testing Claims about Means |  |  |
| Introduction to Unit 11 |  |  |
| Preparing to Test a Claim about a Mean |  |  |
|  |  | State appropriate hypotheses for performing a hypothesis test about a population mean. |
|  |  | Determine if the conditions needed to carry out a hypothesis test about a population mean are satisfied. |
|  |  | Calculate the test statistic and the P-value for a hypothesis test about a population mean. |
|  |  | Draw a conclusion based upon a calculated P-value. |
| Reading Lesson 11.1, Part 1 |  |  |
|  | Testing a Claim about a Population Mean |  |

[^7]
## Scope and Sequence

Unit Lesson
Objectives
Conduct a hypothesis test about a population mean.
Interpret the P -value.
Identify and give a consequence of a Type I and Type II error.
Calculate a test statistic and P -value for a hypothesis test about a population mean using a graphing calculator.

Reading Lesson 11.1, Part 2
Significance Tests and Confidence Intervals

State a conclusion about a significance test for a population mean based upon a confidence interval.
Describe the power of a test and/or what influences the power of a test.
Reading Lesson 11.1, Part 3
Testing a Claim about a Difference between Means

Perform one step of a significance test for a difference in two population means
Conduct a significance test about a difference in two population means.
Calculate a test statistic and P -value for a significance test about a difference in two population means using a graphing calculator.

## Reading Lesson 11.2, Part 1

Testing a Claim about a Mean Difference
Perform one step of a hypothesis test for a mean difference.
Conduct a hypothesis test about a mean difference.
Calculate a test statistic and P -value for a hypothesis test about a mean difference using a graphing calculator.

Reading Lesson 11.2, Part 2
Choosing the Appropriate Inference

## AP Statistics - MA5188

Unit Lesson
Procedure

Reading Lesson 11.2, Part 3
Statistical Inference Project
Unit 11 AP Practice Free-Response Questions

Unit 11 Test

## Scope and Sequence

Objectives

Distinguish between one sample, two samples, and paired data.
Determine the appropriate inference procedure.

State appropriate hypotheses for performing a hypothesis test about a population mean.
Determine if the conditions needed to carry out a hypothesis test about a population mean are satisfied.
Calculate the test statistic and the P -value for a hypothesis test about a population mean.
Draw a conclusion based upon a calculated P -value.
Conduct a hypothesis test about a population mean.
Interpret the P -value.
Identify and give a consequence of a Type I and Type II error.
State a conclusion about a hypothesis test for a population mean based upon a confidence interval.
Describe the power of a test and/or what influences the power of a test.
Perform one step of a hypothesis test for a difference in two population means.
Conduct a hypothesis test about a difference in two population means.
Perform one step of a hypothesis test for a mean difference.
Conduct a hypothesis test about a mean difference.
Distinguish between one sample, two samples, and paired data.
Determine the appropriate inference procedure.

## Unit Lesson

Inference for Distributions and Relationships
Introduction to Unit 12
Preparing to Conduct a Chi-Square Test for Goodness of Fit

State the hypotheses for a chi-square test for goodness of fit.
Determine if the conditions for a chi-square test for goodness of fit are met.
Calculate the chi-square test statistic and P -value.
Calculate the chi-square P -value using technology.
Reading Lesson 12.1, Part 1
Conducting a Chi-Square Test for Goodness of Fit

Perform a chi-square test for goodness of fit given a distribution of equally likely outcomes.
Perform a chi-square test for goodness of fit given a distribution with claimed proportions.
Perform a follow-up analysis to investigate how an observed distribution differs from the hypothesized distribution.

Perform a chi-square test for goodness of fit using technology.

## Reading Lesson 12.1, Part 2

Preparing to Conduct Inference for Two-Way Tables

Distinguish between a chi-square test for homogeneity and a chi-square test for association/independence.
Check the conditions for a chi-square test for inference for a two-way table.
Calculate the chi-square test statistic and P-value for inference for a two-way table.

[^8]
## AP Statistics - MA5188

Unit Lesson

Reading Lesson 12.2, Part 2
Chi-Square Test of
Association/Independence

[^9]Confidence Intervals for Slope

Reading Lesson 12.2, Part 3
Preparing for Inference about Slope
Describe the shape, center, and/or variability of the sampling distribution of the regression slope.
Estimate the parameters for the intercept, slope, standard error of the slope, and/or the standard deviation of the residuals using computer output.

Check the conditions for inference about slope.

## Scope and Sequence

## Objectives

State appropriate hypotheses for a chi-square test for homogeneity.
Carry out a chi-square test for homogeneity.
Identify which observed counts were greater than expected and which observed counts were less than expected.

Calculate the expected counts, chi-square test statistic, and P -value for a chi-square test for homogeneity using technology.

Carry out a chi-square test for homogeneity given computer output.

State appropriate hypotheses for a chi-square test for association/independence.
Carry out a chi-square test for association/independence.
Identify which observed counts were greater than expected and which observed counts were less than expected.

Calculate the expected counts, chi-square test statistic, and P-value for a chi-square test for association/independence using technology.

Carry out a chi-square test for association/independence given computer output.

| AP Statistics - MA5188 | Scope and Sequence |
| :--- | :--- |
| Unit Lesson | Objectives |
|  | Construct a confidence interval for slope using computer output. |
|  | Construct a confidence interval for slope using a graphing calculator. |
|  | Interpret a confidence interval for slope. |
| Reading Lesson 12.3, Part 2 | Carry out a significance test for slope using computer output. |
| Significance Test for Slope | Carry out a significance test for slope using a graphing calculator. |
| Interpret the P-value of a significance test for slope. |  |
| Reading Lesson 12.3, Part 3 |  |
| Unit 12 AP Practice Free-Response <br> Questions <br> Unit 12 Test | Carry out a chi-square test for association/independence. |
|  | State the hypotheses for a chi-square test for goodness of fit. |

Describe the shape, center, and/or variability of the sampling distribution of the regression slope.
Estimate the parameters for the intercept, slope, standard error of the slope, and/or the standard deviation of the residuals using computer output.

Check the conditions for inference about slope.
Construct a confidence interval for slope using computer output.
Construct a confidence interval for slope using a graphing calculator.
Interpret a confidence interval for slope.
Carry out a significance test for slope using computer output.
Carry out a significance test for slope using a graphing calculator.
Interpret the P -value of a significance test for slope.

## Cumulative Exam 2

Cumulative Exam

## AP Review

Preparing for the Exam
Unit 1 Review
Unit 2 Review
Unit 3 Review
Unit 4 Review
Unit 5 Review
Unit 6 Review
Unit 7 Review
Unit 8 Review
Unit 9 Review

| AP Statistics - MA5188 |  | Scope and Sequence |
| :---: | :---: | :---: |
| Unit | Lesson | Objectives |
|  | Unit 10 Review |  |
|  | Unit 11 Review |  |
|  | Unit 12 Review |  |
|  | Practice Exam 1 |  |
|  | Practice Exam 1 - Multiple-Choice Section |  |
|  |  | Decide whether two categorical variables are associated using segmented or side-by-side bar graphs. |
|  |  | Compare two distributions using histograms. |
|  |  | Analyze the effect of extreme values on the value of the mean and median. |
|  |  | Identify if a univariate data set contains any outliers. |
|  |  | Calculate the percentile for individual values in a quantitative data set. |
|  |  | Compare performance using two or more z-scores. |
|  |  | Describe the effect of unusual observations on the correlation. |
|  |  | Interpret the slope and y-intercept of a linear model. |
|  |  | Write the equation of a least-squares regression line that describes a transformed data set given computer output. |
|  |  | Choose an appropriate model for a bivariate data set given regression output and residual plots. |
|  |  | Analyze a study to determine if bias is present and whether that bias leads to an over or underestimate of the population parameter. |
|  |  | Describe the sampling problems of undercoverage, nonresponse, and response and question wording bias. |
|  |  | Describe the effect of confounding. |
|  |  | Identify the explanatory variable, response variable, treatments, experimental units/subjects, the factors and the levels of an experimental design. |
|  |  | Describe the structure of the matched pairs version of a randomized block design, including details about the randomization process. |

## Scope and Sequence

Unit Lesson

## Objectives

Determine probabilities using a two-way table.
Calculate a probability using the general multiplication rule
Calculate the probability of "at least one" using the multiplication rule for independent events and other multi-step probabilities.

Calculate the probability of an event given a probability distribution of a discrete random variable.
Calculate the mean, median, and/or standard deviation of the probability distribution of a discrete random variable.

Calculate a probability or value for a Normal random variable.
Calculate the mean and standard deviation of a transformed random variable.
Calculate the mean and standard deviation of the sum or difference of two or more random variables.
Calculate cumulative binomial probabilities using a graphing calculator.
Calculate a geometric probability using a graphing calculator.
Calculate a probability based upon the sampling distribution of $p^{\wedge} 1-p^{\wedge} 2$.
Calculate probabilities given a normal population based upon the sampling distribution of the sample mean or difference in sample means

Interpret the confidence level.
Determine how the margin of error and width of the interval is affected by the confidence level and sample size.

Calculate the minimum sample size that is needed to construct a confidence interval for a population proportion with a given confidence level and a given margin of error.

Interpret the P -value.
Describe the power of a test and/or what influences the power of a test.
Construct a confidence interval for a difference in two population means.
Evaluate a claim about a population mean difference based upon a confidence interval.
Draw a conclusion based upon a calculated P -value.

## AP Statistics - MA5188

Unit Lesson

## Scope and Sequence

## Objectives

Identify and give a consequence of a Type I and Type II error.
Distinguish between one sample, two samples, and paired data.
Determine the appropriate inference procedure.
Calculate the chi-square test statistic and P -value for inference for a two-way table
Carry out a significance test for slope using computer output.
Practice Exam 1 - Free-Response Section

Practice Exam 2<br>Practice Exam 2 - Multiple-Choice Section

Given a two-way table, calculate marginal and joint relative frequency distributions.
Compare two distributions using dotplots or stemplots.
Calculate/interpret the range, standard deviation, or interquartile range of a univariate data set.
Describe the center, shape and spread of a distribution whose values have been transformed by a combination of addition or subtraction and by multiplying or dividing by a constant value.

Describe a normal distribution using the empirical rule. Calculate probabilities using the empirical rule.
Estimate the proportion of values in a Normal distribution for inclusive intervals of less than or equal to, greater than or equal to, or between and including values.

Distinguish between correlation and causation.
Make a prediction using a linear model.
Calculate residuals.
Distinguish between stratified random sampling, systematic random sampling, and cluster sampling.
Distinguish between an observational study and an experiment.
Identify the placebo effect, as well as the benefits of blindness within an experimental design.

| AP Statistics - MA5188 | Scope and Sequence |
| :--- | :--- |
| Unit Lesson | Objectives |
|  | Determine probabilities using a Venn diagram. |
|  | Interpret a conditional probability. |
|  | Calculate a probability using the multiplication rule for independent events. |
|  | Calculate a probability of a value within the distribution of a transformed random variable. |
|  | Calculate binomial probabilities using the binomial probability formula. |
|  | Calculate the mean and standard deviation of a geometric random variable. |
|  | Determine the shape, mean, and/or standard deviation of the sampling distribution of the sample |
| proportion. |  |
|  | Calculate a probability based upon the sampling distribution of p^. |
|  | Determine if there is convincing evidence against a claim based upon a calculated probability. |
|  | Interpret a confidence interval. |
|  | Verify if each of the conditions for calculating a confidence interval for a population proportion are met. |
|  | Construct a confidence interval for a population proportion. |
|  | Determine whether the conditions for calculating a confidence interval for a difference in two population |
| proportions are met. |  |
|  | Describe and give a consequence of a Type I and Type II error. |
|  | Draw a conclusion based upon an estimated P -value. |
| Conduct a hypothesis test about a population proportion. |  |
| Calculate a test statistic and P -value for a hypothesis test about a population proportion using a graphing |  |
| calculator. |  |
| Determine the $t$ critical value needed to compute a C\% confidence interval for a population mean. |  |
|  | Construct a confidence interval for a population mean. |
| Describe how the margin of error of a confidence interval can be reduced. |  |
| Construct a confidence interval for a mean difference. |  |

Unit Lesson
Objectives
Calculate the test statistic and the P -value for a hypothesis test about a population mean.
State a conclusion about a hypothesis test for a population mean based upon a confidence interval.
Conduct a hypothesis test about a mean difference.
Determine if the conditions for a chi-square test for goodness of fit are met.
Check the conditions for a chi-square test for inference for a two-way table.
Describe the shape, center, and/or variability of the sampling distribution of the regression slope.
Construct a confidence interval for slope using a graphing calculator.


[^0]:    Page 11 of 40

[^1]:    Reading Lesson 4.3
    Unit 4 AP Practice Free-Response Questions

    Unit 4 Test

[^2]:    Page 14 of 40

[^3]:    Reading Lesson 5.3, Part 2

[^4]:    Page 19 of 40

[^5]:    Reading Lesson 9.1, Part 2
    Preparing to Test a Claim about a
    Population Proportion

[^6]:    Reading Lesson 10.1, Part 1

[^7]:    Page 29 of 40

[^8]:    Reading Lesson 12.2, Part 1
    Chi-Square Test for Homogeneity

[^9]:    Reading Lesson 12.3, Part 1

